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ABSTRACT 
 
Wall functions derived from Density Functional Theory 

(DFT) are used to incorporate non-continuum atomistic 
physics into continuum modeling of electroosmotic flow in 
slit-like channels ranging in width from a few molecular 
diameters to scales several orders greater.  These wall 
functions represent deviations of the electrochemical 
potentials of charged and uncharged species from their 
nominal continuum values due to Lennard-Jones 
interactions among fluid and solid molecules, hard sphere 
repulsions, and short range non-coulombic electrical 
interactions.  Because these deviations decrease strongly 
with distance from the charged surfaces, the wall functions 
computed for a channel width of 10 or more molecular 
diameters can be applied to all wider channels.  
Electroosmotic speeds computed by this DFT-based 
approach are sometimes two or three times smaller than 
those predicted by more primitive Poisson-Boltzmann 
modeling, particularly for large surface charge densities, 
large electrolyte concentrations, and small channel sizes. 
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1 INTRODUCTION 
 
The atomistic physics of fluid/solid interfacial layers 

may substantially influence fluid flow and ion transport, 
particularly in nanoscale channels.   As illustrated in 
Figures 1 and 2, interfacial fluid molecules are ordered by 
the planar structure of adjacent solid surfaces.  Within the 
first monolayer, the local density of molecular centers is 
typically several times greater than that of a homogeneous 
far-field fluid.  Successive density peaks, spaced roughly 
one molecular diameter apart, become progressively weaker 
with increasing distance from the surface. These local 
density variations alter the fluid viscosity, reduce ion 
diffusivity, and alter the distribution of the electrical body 
forces that control the speed of electroosmotic flows. 

Previous studies addressing non-continuum fluid 
mechanics have been largely based on Molecular Dynamics 
(MD) simulations [1].  Although these models directly treat 
the atomistic physics of interest, they often require long 
computing times and are not readily integrated into 

traditional continuum modeling tools needed to address 
complex multiscale systems of engineering interest. 

In the present paper we use Density Functional Theory 
(DFT) [2] to compute fluid and ion density profiles within 
slit-like channels.  From these results we determine wall 
functions describing deviations of the electrochemical 
potential from nominal continuum values as a function of 
distance from the channel walls.  It is shown that these wall 
functions are relatively insensitive to channel size for 
widths greater than a few molecular diameters. Finally, the 
wall functions are used in conjunction with the governing 
Poisson equation, ion transport equations, and Navier 
Stokes equations to compute electroosmotic velocity 
profiles in channel sizes ranging over several orders of 
magnitude.  
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Figure 1: Density profile of an uncharged liquid in a 
narrow slit.  Density of molecular centers is greatest in 
layers adjacent to planar walls.  Peaks are spaced one 
molecular diameter apart. 

 
2 GOVERNING EQUATIONS 

 
We restrict our attention to steady fully-developed 

electroosmotic flow of an incompressible liquid in a slit-
like channel with the x and z coordinates directed across 
and along the channel, respectively.  Under these conditions 
the transverse velocity components, ux and uy, vanish, and 
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the dependent variables become independent of axial 
position.  The momentum equation then takes the following 
form [3] 
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where

! 

u " uz (x)  is the axial fluid flow speed, φ is the electric 
potential, 

! 

"
e
 is the local charge density, and Ez is the applied 

axial electric field. The electric potential is related to the 
charge distribution by the Poisson equation 
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where ε is the permittivity of the liquid.  The local charge 
density appearing in the momentum balance and in 
Poisson’s equation is obtained by summing the 
contributions from the N molecular species.  Densities of 
the individual ion species, ρi, are generally determined by 
solving species conservation equations of the form [3] 
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Here, γi  is the electrochemical potential and υi is the species 
mobility related to the dilute species diffusivity, Di, through 
the Nernst-Einsten equation, υi=Di/kT.    

In classical continuum models, the chemical potential of 
a species is generally assumed to depend on the logarithm 
of the species density and the potential energy relative to 
the electric field [3] 
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where 
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"
i

o is a reference potential, k is Boltzmann’s constant 
and T is the temperature.   

In Density Functional Theory, minimization of the 
Helmholtz free energy yields an expression of the following 
form for the chemical potential of each species [2]. 

 

! 

"
i
= "

i

0
+ kT ln#

i
+ z

i
e$ + %f

i

elec
+ f

i

LJ
+ f

i

hs
+ v

i
 (5) 

 
The first three terms are identical to those of the classical 
theory in Eq. (4).  The fourth term, 
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"f
i

elec , represents the 
deviation of short range electrical interactions from the 
classical columbic model; it is modeled here using the mean 
field spherical approximation (MSA) derived by Waisman 
and Lebowitz.  Attractive energies are defined by a density 
weighted integral of a pair potential function, 

! 

uij(s) , over the 
surrounding fluid, separately summing the contributions 
from each species.   
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Here 

! 

s = r " # r  and 

! 

uij(s)  is taken as a cut and shifted 
version the Lennard-Jones (LJ) 6-12 potential.  Hard sphere 
repulsions among fluid molecules, 

! 

f
i

hs, are modeled using 
the highly successful Tarazona model.  Finally, the external 
potential, vi, is obtained by summing LJ interactions over 
planar sheets of atoms typical of an fcc solid.   

The DFT equations are solved on a discretized spatial 
grid by iteratively adjusting the local densities of each 
species to satisfy Eq. (5) at all points for all species. The 
electric field is simultaneously computed from Eq. (2) using 
most recent values of the DFT charge distribution.  Once the 
DFT solutions are converged, it is a simple manner to extract 
the wall functions, 

! 

"# i ($) , representing the deviation of the 
local DFT chemical potential from the classical model as a 
function of distance, ξ, from the surface. 
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The first term describing short range electrical interactions 
applies only to ion species, while the other three terms apply 
to all species.   

The wall functions, so determined, can be used in two 
alternative manners.  In multidimensional applications, the 
wall functions can be added to the chemical potential used 
in solving the generalized transport equation, Eq. (3).  
However, in the present channel flow problem and others 
like it, the transverse velocity is zero, or negligible, within 
the few molecular layers adjacent to the surface.  Under this 
relatively weak restriction, Eq. (3) requires that the 
electrochemical potential of each ion species must be 
uniform within the surface layer and, hence, Eqs. (4,5) yield 
a modified Boltzmann equation for the ion distributions.  
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A similar correction to the Boltzmann equation was 
deduced from MD simulations by Qiao and Aluru in [1].  
Once the wall functions are known, they can be used in 
conjunction with the usual governing equations, (1-3), to 
compute electroosmotic flows in the same manner as done 
in conventional continuum codes.  Moreover, since the wall 
functions are relatively insensitive to the channel width, a 
single set of wall functions can be applied to problems on a 
wide range of domain sizes.  This is particularly beneficial 
on large domains, because it eliminates the need for fine 
DFT gridding over large regions.  
  

3 EXAMPLE CALCULATIONS  
 

All of our example calculations utilize a three component 
model having solvent, coion, and counterion species.  All 
three species have a molecular diameter of d=4.25 
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temperature is 298 K, and the dielectric constant, ε*=78.5, is 
assumed to be the same for the fluid and the adjacent solid, 
thus eliminating the need for image charges.  The 
corresponding value of the plasma constant, 
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/#kTd, 

is 1.68.  The bulk molecular density of the solvent is 

! 

"# = 0.7 /d
3 , and the LJ potential well depth is 

! 

"
LJ

= kT  for 
all species. In addition, the ion concentrations of the 
reference state (eg. a large reservoir connected to the 
channel) will be varied from 

! 

C"=0.001 to 1.0 moles/liter. 
Figure 2 illustrates ion density profiles computed by DFT 

(symbols) and by the classical Poisson-Boltzmann (PB) 
model (dotted) lines.  To accentuate differences between the 
models, the normalized surface charge density has been 
taken at the upper end of the range normally encountered in 
microfluidic devices, 

! 

"* = "d
2
/ e=0.5.  It is seen that the 

DFT model tends to shift more of the counterions toward the 
charged surface, relative to PB.  This is partly because of the 
layering phenomenon seen earlier in Fig. 1, and partly 
because the electrical interactions among like charges are 
weakened by the short range MSA corrections to the 
classical coulombic model.  Further, since the integral of the 
charge distribution must be identical to the prescribed 
surface for both solutions, the PB solution has a greater 
concentration of counterions in the channel center.  

This shifting of counterions toward the channels walls 
reduces the effective thickness of the Debye layer, increases 
the viscous shear stresses, and reduces the electroosmotic 
speed of the DFT solutions, compared to PB.  The disparity 
in the normalized mean speed, averaged over the channel 
width, is illustrated in Fig. 3 as a function of the channel 
width.  The disparity between DFT and PB speeds increases 
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Figure 2: Comparison of ion density profiles computed by 
DFT (symbols), classical Poisson-Boltzmann theory 
(dotted), and by wall functions based on DFT solutions for 
w*=10 (solid lines). 

! 

C"=0.001 M, σ*=0.5. 

with increasing surface charge density and with decreasing 
channel size.  The latter influence is partly due to a 
difference in the location of the no-slip boundary condition.  
In both cases, the boundary condition is applied at the 
position of closest approach of charged ions.  For DFT this 
position is one half molecular diameter from the outer edge 
of the wall molecules, whereas in classical PB the charge 
density is actually greatest immediately adjacent to the 
surface so, in classical PB, the no-slip condition is applied at 
the surface. 

Wall functions computed from DFT solutions in 
accordance with Eq. (7) are illustrated in Fig. 4 for four 
different choices of the normalize channel width.  The 
electrical portions of the wall functions, 

! 

"f
i

elec , having 
opposite signs for the oppositely charged ions species are 
essentially independent of the channel width for w*=w/d>3 
because their magnitude becomes relatively small within two 
molecular diameters of the surface.  The oscillatory portion 
of the wall functions, applicable to all species, is mainly a 
consequence of the layered ordering induced by the planar 
channel wall illustrated earlier in Figs. 1 and 2.  This 
phenomenon is longer ranged and thus more sensitive to the 
channel width.  Even so, the wall functions for a channel 
width of w*=10 can certainly be applied to all wider 
channels.   

However, it is somewhat surprising and encouraging to 
find that wall functions calculated from the DFT results for 
w*=10 can also be applied to narrower channels as well as 
wider ones.  This is demonstrated in Fig. 3 by comparison of 
exact DFT results (symbols) for various channel widths with 
approximate solutions obtained by solving Eqs. (1,2,8) using  
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Figure 3: DFT (symbols) predicts smaller speeds than 
classical PB (dotted).  Speeds based on wall functions for 
w*=10 (solid lines) are in excellent agreement with full 
DFT solutions (symbols). 
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C"=0.001 M. 
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wall functions, 

! 

"# i ($) , computed from the DFT results for 
w*=10. The two sets of results are nearly indistinguishable 
over the full range of channel widths from w*=3 to 15.  A 
similar comparison is made in Fig. 2 where the exact DFT 
results for ion and solvent density profiles (symbols) in a 
channel of width w*=5 are compared with approximate 
results (solid lines) based again on wall functions for w*=10.  
The agreement is quite good, even for the solvent molecules,  
despite the fact that the solvent is only influenced by the 
longer ranged steric component of 

! 

"# i ($) .  
Figure 5 compares mean electroosmotic speeds 

computed by the classical Poisson Boltzmann approach 
(dotted) with results obtained using wall functions based on 
DFT solutions for a channel width of w*=10 (symbols and 
solid lines).  Although the PB solutions depend on the 
concentration, 

! 

C", this dependence is eliminated from Fig. 5 
by plotting the speed versus the normalized Debye thickness, 
λ, which is inversely proportional to the square root of 

! 

C".  
In contrast, the DFT-based wall function results still do 
depend on 

! 

C", in spite of this scaling of the plot.   
For each of the molarities indicated in Fig, 5, the DFT 

symbol furthest to the right in each line is for a channel 
width of w*=3.  However, owing to the inverse square root 
dependence of λ on 

! 

C", the corresponding values of λ /w 
decrease from 15, to 1.5, to 0.47 as 

! 

C" increase from 0.001, 
to 0.1, to 1.0 M. Rather than prescribing the surface charge 
density, as in previous examples, the surface potential is now 
prescribed as 

! 

"
*

= "e /kT = 2.  For this modest zeta 
potential, the PB model provides good results for 0.001 M. 
However, deviations become large for 

! 

C"= 0.1 and 1.0 M, 
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Figure 4: Wall functions depend only weakly on channel 
width, w. Oscillatory repulsions (dotted) apply to all 
species.  Additive electrical contributions (solid) apply to 
singly-charged coions and counterions. 

particularly for the smaller channels.  At larger zeta, the 
deviations between DFT and PB grow even larger.  

 
4  SUMMARY  

 
Wall functions derived from DFT have been used to 

compute electroosmotic flows in a broad range of channel 
sizes.  A single set of wall functions computed for a 
channel size of w*=w/d=10 appears applicable to all 
channel widths w*>3.  Comparison of these DFT-based 
results with classical Poisson-Boltzmann modeling 
indicates that PB may be substantially in error when 
channel sizes are small, molarities are large, and surface 
charge density or zeta potential are relatively large. 
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Figure 5: Comparison of DFT wall function results 
(symbols) with classical PB solutions (dotted line) for 
fixed surface potential and various concentrations.  Speeds 
are normalized by the prescribed surface zeta potential. 
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