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ABSTRACT 
 We perform an entropy-enhanced frequency-domain 
analysis to examine large-scale genomic data. This 
ensures superior qualitative and quantitative coherency. 
Different statistical methods are used to analyze and 
evaluate large-scale data performing data mining. These 
attempts have been partially successful due to sequences 
gaps, nonconding and low complexity regions, inaccuracy, 
etc. The proposed novel concept complies with the 
conventional data formats and complements other 
methods ensuring comprehension of complex large-scale 
genomic data under uncertainties. The analysis is 
performed and reported for various genomic sequences 
(E.coli, S.typhimurium, HIV, cancer and other). 
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1. INTRODUCTION 
This paper examines complex genomic patterns with 

the ultimate objective to provide robust analysis and 
coherent evaluation. The use of statistical methods in 
attempt to analyze large-scale data produced by high-
throughput experiments have some limitations. Despite 
the importance of application of bioinformatics to solve 
problems, efforts to date have been progressed with a 
limited progress. The mathematical foundations used for 
incomplete genomic data under uncertainties are obscure. 
Therefore, we develop and demonstrate the entropy-
enhanced frequency-domain concept examining most 
complex genomic sequences including human genome. 
 
2. FUNDAMENTALS AND STATISTICAL ANALYSIS 

Meaningful databases have been developed. For 
example, the SCOP, CATH and FSSP databases classify 
proteins based on structural similarity, Pfam and 
ProtoMap identify families of proteins based on sequence 
homology, while PartList and GeneCensus examine the 
occurrence of protein families in various genomes. The 
large-scale genomics and proteomics are the forefront of 
not only biological and genomic research, but also 
engineering and technology developments. The learning 
methods (clustering, Bayesian networks, decision trees, 
neural networks) can be used to study trends and patterns 
in the large-scale data. Genome sequences for different 
organisms are available. In particular, (1) GenBank, 
DDBJ and EMBL provide nucleic acid sequences; (2) 
PIR and SWISS-PROT report protein sequences; (3) 
Protein Data Bank offers protein structures.  

In addition to sequence and structure databases, 
efforts have been directed focusing on functionality 
aspects. Integrated data-intensive large-scale analysis and 
heterogeneous intelligent data-mining are essential. There 
is a need to develop novel paradigms that will allow one 

to integrate genomic data from different databases in a 
common framework. A general problem is to integrate the 
large-scale diverse genomic information in the viable 
taxonomies or categories. Currently, the majority of 
methods are based on the statistical analysis employing 
unsupervised learning, self-organization, classification, 
hierarchical clustering, etc. For example, a clustering 
method ensures multitiered partitioning of the data sets. 

Using the Pearson correlation coefficient 
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Xi and Xj, the similarity between genes (or groups of 
genes) is obtained. The aggregation of proteomic data 
from multiple sources must be performed to identify and 
predict various protein properties, functionality and 
features. The DNA sequences of several human 
pathogens are reported. To achieve reasonable accuracy 
and high-quality continuous sequences, each base pair 
was sequenced many times. As a result, 90-93% of the 
euchromatin sequence has an error rate of less than 1 base 
per 10,000 bases. Different sequencing technologies, 
mathematical methods, procedures and measurement 
techniques have been used. However, it is very difficult to 
estimate the accuracy, and there are many gaps and 
unknown strings of bases in the large-scale genomic 
sequence data. There are differences even in the count of 
genes. For example, the public human genome database 
reports 31,780 genes (2,693 million bases sequenced). 
These include 15 thousands known genes and 17 
thousands predicted genes. However, it is estimated that 
there can be less than 20 thousands actual genes. Some 
predicted genes can be “pseudogenes” (noncoding) or 
fragments of real genes leading to predictions that there 
could be only 7 thousand real genes. For example, Celera 
reported 39,114 genes (2,654 million bases sequenced) 
advising that 12 thousand genes are “weak” 
(http://www.celera.com/). Hence, it is very difficult to 
identify the disease-associated genes.  

Different statistical techniques have been applied to 
attain global and local sequence comparisons. However, 
under even the simplest random models and scoring 
systems, the distribution of optimal global alignment 
scores is unknown. Monte Carlo experiments potentially 
can provide some promising results for specific scoring 
systems and sequence compositions, but these results 
cannot be generalized. In the BLAST program, the 
database search is performed utilizing high-scoring 
segment pairs (HSPs). To analyze the score probability, a 
model of random sequences is applied. For proteins, the 
simplest model chooses the amino acid residues in a 
sequence independently, with specific background 
probabilities for the various residues, and the expected 
score for aligning a random pair of amino acid is required 
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to be negative. For sequence (with lengths m and n), the 
HSP scores statistics are characterized by the scaling 
parameters K and λ. The expected number of HSPs with 
score at least S is given as E=mnKe–λS. One obtains the E-
value for the score S. However, the length of sequence 
changes E, and sound methods to find the scaling positive 
parameters K and λ have not been reported. The number 
of random HSPs with score greater or equal to S is 
described by a Poisson distribution. In BLAST, the E-
value is used to compare two proteins of lengths m and n. 
To assess the significance of an alignment that arises from 
the comparison of a protein of length m to a database 
containing many different proteins of varying lengths, one 
assumes that all proteins in the database are a priori 
equally likely to be related to the query. This implies that 
a low E-value for an alignment involving a short database 
sequence should carry the same weight as a low E-value 
for an alignment involving a long database sequence. To 
calculate a "database search" E-value, one multiplies the 
pair-wise-compared E-value by the number of sequences 
in the database using, for example, the FASTA protein 
comparison programs. The approaches applied to date 
have a sound theoretical foundation only for local 
accurate alignments that do not have gaps and short 
sequences estimating K and λ. Different amino acid 

substitution scores 
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the target frequency; pi and pj are the background 
frequencies for the various residues. The target 
frequencies and the corresponding substitution matrix 
may be calculated for any given distance. However, this 
method has serious deficiencies. Due to the application of 
vague mathematical methods, uncertainties and low 
complexity regions lead to unsolved difficulties in 
sequence similarity searches, e.g., high score results for 
sequences that are not related, existing matches cannot be 
found, etc. 
 

3. SOFTWARE FOR STATISTICAL ANALYSIS 
For the distinct concepts reported in Section 2, 

specialized software is available. For example, a 
rudimentary window-based (size is 81) statistical analysis 
of the E.coli genome is performed in the MATLAB 
toolbox, and the results are summarized in Figure 1. 

 

Figure 1. Nucleoties and codons statistics for FliG 

4. FOURIER TRANSFORM 
To guarantee robust analysis, we propose to analyze 

the genomic sequences in the frequency domain using the 
Fourier transform [1]. Consider a sequence of nucleotides 
A, T, C and G. We assign the numbers a, t, c and g to the 
characters A, T, C and G. These a, t, c and g can be 
complex numbers. There exists a numerical sequence 
resulting from a character string of length N as 
x[n] = auA[n] + tuT[n] + cuC[n] + guG[n], n=0,1,2,…, N–1, 
where uA[n], uT[n], uC[n] and uG[n] are the binary 
indicator sequences. 

For amino acids, we have the following expression 
for the amino acid sequence 
x[n] = AlauAla[n] + ArguArg[n] + … + TyruTyr[n] + ValuVal[n]. 

The DFT of a sequence x[n] of length N is  
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If we assign numerical values a, t, c and g, then 
X[k] = aUA[k]+ tUT[k] + cUC[k] + gUG[k], k=0,1,2,…,N–1. 

In general, DNA character strings lead to the 
sequences UA[k], UT[k], UC[k] and UG[k] resulting in four-
dimensional representation of the frequency spectrum. 
The total power spectral content of the DNA character 

string is 
2222 ][][][][][ kUkUkUkUkS GCTA +++= . 

For the amino acids, the frequency spectra and power 
analysis are identical to those reported for DNA. Twenty 
proteinogenic amino acids are represented as complex-
valued functions z[n]=x[n]+jy[n] mapping their structures 
and properties. One has  
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5. APPLICATIONS OF FOURIER TRANSFORM 

The application of the Fourier transform is reported 
in Figure 2 for complete E.coli and S.typhimurium 
genomes with 4,639,221 and 4,937,381 base pair strains 
[2, 3]. The nucleotide pattern for these bacteria is 
completely distinct. It is virtually impossible to analyze 
patterns using statistical methods. In contrast, the DFT is 
effectively applied providing meaningful results. 

 
 Figure 2. Fourier transforms for E.coli and S.typhimurium genomes 
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6. FREQUENCY-DOMAIN ANALYSIS UNDER 
UNCERTAINTIES 

In general, gene sequences may not be complete as 
there can be many missed sites. The HIV genes are 
typical examples [4, 5]. Correspondingly, statistical 
methods cannot be applied, and linear maps cannot be 
found. The frequency analysis of sequences promises to 
solve a spectrum of problems such as: examine and 
identify protein coding genes in genomic DNA, detect 
genes, define structural and functional characteristics, 
analyze the data, identify patterns in gene sequences, etc.  

A high-performance interactive software has been 
developed in the MATLAB environment to support robust 
frequency-domain analysis. We utilize the power spectral 
density (PSD) analysis applying different methods of PSD 
estimation (covariance, multiplier, periodogram, etc.). For 
example, Welch method is based on dividing the 
sequence of data into (possibly overlapping) segments, 
computing a modified periodogram of each segment, and 
averaging the PSD estimates. That is, we consider  

[ ] 1,...,2,1,0  ,][ 2 −=+−= Lnnmxnx L
M
N

m  
to be the mth segment of the sequence x∈CN divided into 
M segments of length L. The Welch PSD estimate is 
given as { }

mmx kXR 2][ = , where { }m  ⋅ denotes 
averaging across the data segments. 

Figure 3 illustrates the power spectra of the DNA 
sequence of the human gene CISH [5]. Lung and kidney 
tumors frequently exhibit deletions of this gene. 

 

 

 
Figure 3. Interactive software: Power spectral density of the 

human gene CISH (3p21.3) and two estimated PSDs  

Using distinct methods, the results of the application 
of the developed interactive software for E.coli (genome 
sequence O157:H7, AE005174-1, segment 1), HIV2 and 
human cancer genes are reported in Figures 4, 5 and 6. 

 

  
Figure 4. Interactive software: E.coli genome sequence 

 

  
Figure 5. Interactive software: HIV2 sequence 

 

  
Figure 6. Interactive software: Cancer sequence 

 
7. FOURIER TRANSFORM AND GENOMIC 

PATTERN ANALYSIS 
We use the PSD estimation to distinguish genomic 

sequences versus non-genomic sequences. Figure 7 
reports four plots. The first is the estimated PSD of the 
E.coli gene FliG as a standalone gene. The next three are 
the estimated PSDs for the FliG gene surrounded by other 
nucleotides. In particular, for the second PSD, we 
consider FliG surrounded by the FliM and FliN genes. In 
the third plot, FliG is surrounded by random nucleotides. 
The fourth plot reports PSD for the nucleotides from 
E.coli genome and FliG. The documented results 
demonstrate very distinct PSDs for a standalone gene, 
three genes, and gene-nucleotide sequences. Thus, the 
proposed concept allows one to distinguish genomic 
versus non-genomic sequences. 
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(a)  

(b)  

(c)  

(d)  
Figure 7. PSD plots of the sequences: (a) Standalone FliG; (b) 
FliM-FliG-FliN genes; (c) Random nucleotides-FliG-random 
nucleotides; (d) Nucleotides from genome-FliG-nucleotides 

 

8. ENTROPY ANALYSIS 
The entropy, which is the Shannon quantity of 

information, measures the complexity of the set. The 
uncertainty after binding for each site (Shannon entropy 
of position l) is , ),(log ),()( 2∑

∈

−=
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lbflbflH  where A is 

the cardinality of the four-letter DNA alphabet, 
A={A,C,G,T}; f(b,l) is the frequency of base b at position 
l. For DNA, the maximum uncertainty at any given 
position is log2A=2 bits. For amino acids, the alphabet is 
A={Ala, Arg, …, Tyr, Val}. Therefore, for amino acids, 
the maximum entropy at any given position is log2A=4.32 
bits. Using the entropy H(l), one derives the information 
at every position in the site. In particular, 
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The total amount of pattern in ribosome binding sites 
is found by adding the information from each position, 
e.g., ∑= l

lRlR )()(Σ  bits per site. For E.coli and 
Salmonella typhimurium one finds 11.2 and 11.1 bits per 
site. We apply probability methods to study E.coli and 
S.typhimurium genomes [1]. Our ultimate goal is to apply 
fundamental mathematical methods to identify interesting 
sections of a genome including the low complexity 

regions. Examining DNA as a coding system, it is shown 
that distinct DNA segments have different entropy. In 
general, entropy depends on the probability model 
attributed to the source. Repetitions (low complexity 
segments) have low entropy. Figure 8 presents the 
entropy of verified gene sequences for E.coli EDL933 
with 5476 genes [2, 3]. A similar entropy analysis is 
performed and reported for the S.typhimurium genome 
with 4596 genes in Figure 8. Low and high complexity 
regions in genomes are found. This entropy concept is 
applied to the entropy-enhanced frequency analysis. 

  
Figure 8. Entropies for E.coli and Salmonella typhimurium genes 
 

9. CONCLUSIONS 
We proposed the solutions to important problems in 

robust qualitative and quantitative genome analysis. The 
frequency and entropy analyses were performed to 
illustrate that the template patterns can be robustly 
examined in the frequency domain under uncertainties. 
This analysis provides a viable method in pattern 
recognition, prototyping, synthesis, etc. The proposed 
concept is valuable due to: (i) robust homology search 
and gene detection (identification) with high accuracy and 
robustness under uncertainties; (ii) accurate and robust 
data-intensive analysis and evaluation; (iii) analysis of 
multiagent pathways for multi-genes and multifunctional 
standpoints; (iv) superior computational efficiency and 
mathematical soundness; (v) coherent information 
extraction and information retrieval; (vi) correlation 
between large-scale multiple databases. These results 
demonstrated the utility of the application of the 
frequency- and entropy-domain analysis as compared 
with the conventional approaches. The frequency domain 
maps are shown to be robust, compact and illustrative. 
The concept was tested and software was developed. 

 

     ACKNOWLEDGEMENTS – The author acknowledges the 
contribution of F. Krueger in the software developments 
during his graduate studies at RIT (2003-2004). 
 

REFERENCES  
1. S. E. Lyshevski and F. A. Krueger, “Robust entropy-enhanced 

frequency-domain genomic analysis under uncertainties,” Proc. 
IEEE Conf. Nanotech., Munich, Germany, pp. 556-558, 2004. 

2. K. E. Rudd, “EcoGene: A genome sequence database for 
Escherichia coli K-12,” Nucleic Acids Res., pp. 60-64, 2000. 

3. Genome Sequencing Center, University of St. Louis, 2004. 
http://genome.wustl.edu/projects/bacterial/styphimurium/  

4. Proteome Analysis, European Bioinformatics Institute, 2004. 
http://www.ebi.ac.uk/proteome/ 

5. HIV Databases, Los Alamos National Laboratory, 2004. 
http://www.hiv.lanl.gov 

NSTI-Nanotech 2006, www.nsti.org, ISBN 0-9767985-7-3 Vol. 2, 2006328


	280.pdf
	2. МATERIALS AND METHODS
	3.1. Principle of CPM
	REFERENCES



	373.pdf
	CONCLUSION
	REFERENCES

	771.pdf
	Preliminary cytotoxic effects of application of an AC magnetic field were obtained in CaCo-2 cell media in contact with 0.15 mg/ml of magnetite/crosslinked dextran nanoparticles.  A decrease in cell culture viability of about 60 % was found upon the application of an AC magnetic field at 3.0 kA/m and 1.0 kHz for about 45 minutes. 

	546.pdf
	3. CONCLUSIONS

	825.pdf
	 
	Each step of the bioactive functionalization was confirmed by a novel CBQCA (3-4-carboxybenzoyl quinoline-2-carboxaldehyde) fluorescence method (3). CBQCA is inherently a non-fluorescent molecule but fluoresces well when attached to amine groups that arise from the aminated surfaces and the amines from bioactive group moieties.   

	1030.pdf
	ABSTRACT
	Acknowledgements
	References


	342.pdf
	ABSTRACT
	4  CONCLUSIONS
	 
	 
	Figure 4: UV-VIS spectra of silver colloidal solution mixed with bacteria.
	 
	Figure 5: Time evolution of the major SERS peak.
	 
	Figure 7A: Tapping mode AFM image of a roughened silver surface after the landing of crystal violet molecules and subsequent thorough washing. 
	 
	Figure 7B: Flattened view of the tapping mode AFM image of the same surface shown above.
	 
	5  REFERENCES
	[
	[
	[
	[
	[
	[
	[


	228.pdf
	A
	ABSTRACT
	INTRODUCTION
	RULE BASED MODELING
	CELLULAR COMMUNICATION
	CHEMICAL  SIGNALING
	CONCLUSION
	REFERENCE

	658.pdf
	INTRODUCTION
	MATERIAL AND METHODS
	The phytoplankton
	The nutrients
	The system

	RESULTS AND DISCUTION
	CONCLUSIONS AND PRESPECTIVES
	REFERENCES

	215.pdf
	Self-Assembled Soft Nanomaterials from Renewable Resources 
	 
	 
	ABSTRACT 
	 
	Keywords: organic soft materials, amphiphiles, self-assembly, lipid nanotube, renewable resources. 
	3   RESULTS AND DISCUSSION 





	281.pdf
	Introduction
	Figure 2: Fig 1(a) shows a TEM image of lath-like single cry

	705.pdf
	Demonstrative Applications of the Infusion Process
	3.1 Anti-Fouling and Release Applications
	3.2 Enhanced Interfacial Bonding and Adhesion
	3.6 Flexible Broad band Radiation Absorbing materials

	633.pdf
	1. INTRODUCTION
	2. TECHNOLOGY & PRODUCTS
	3. APPLICATIONS
	4.  CONCLUSIONS

	995.pdf
	Electrochemical Synthesis of Polyaniline




