Capillary filling speed in silicon dioxide nanochannels
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ABSTRACT

We present a simple silicon-based fabrication tech-
nique for nanocapillaries based on controlled growth of
silicon-dioxide, UV lithography, etching with etch-stop,
and glass wafer bonding. Our approach improves state-
of-the-art with respect to the obtained cross-wafer ho-
mogeneity and precision in the height of the nanocapil-
laries. The improvement is due to our use of the silicon
substrate as an etch stop. We extend the results in
Tas et al., Appl. Phys. Lett. 85, 3274 (2004), by mea-
suring capillary filling speed on seven different channel
heights, ranging from 25 to 3400 nm. A systematic devi-
ation from bulk behaviour has been observed for channel
heights below 100 nm.
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1 Introduction

Our work is motivated by recent experiments involv-
ing stretching of individual DNA molecules in nanochan-
nels [1]. Simple, reproducible fabrication of nanochan-
nels, and understanding the basic nanofluidics is instru-
mental for further advancement of this technology. In
addition to the deposition-based fabrication approach in
Ref. [1], two other methods have been reported recently:
TMAH etched silicon plus a single oxidation step with-
out etch stop resulting in accuracies of h = £3 nm [2],
and similar results obtained by using reactive CHF3/Ox
plasma etch into fused silica [3] or commercial buffered
oxide etchant for etching into Borosilicate glass [4].

2 Fabrication of nanochannels

In Fig. 1(a)-(d) we outline our four main process
steps, where nanometer homogeneity and precision in
the final channel height A is obtained by means of ther-
mal oxidation and wet etching: (a) On a silicon wafer
substrate we grow a primary thermal oxide layer of thick-
ness h+d. (b) The nanofluidic channel is defined by UV
lithography and wet-etching in buffered hydrogen fluo-
ride (BHF) that removes exposed silicon-dioxide all the
way down to the silicon substrate. This leaves chan-
nels with silicon-dioxide side-walls of height h + d and
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Figure 1: Outline of the four main process steps, where
nanometer precision in the final channel height h is ob-
tained by means of thermal oxidation and BHF wet etch-
ing, see text.
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Figure 2: Superposed surface profiler scans across
100 nm channels at various places on a 100 mm wafer.
The step height is seen to be very uniform and thus the
process is well suited for making nanochannels with a
very low tolerance of £2 nm. A small amount of stress
appears, but it does not affect the step height.
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Figure 3: SEM pictures of channel cross-sections of
cleaved devices. (a) 3.4 pm channel showing h =
3363 nm. (b) 100 nm channel showing h = 91 nm.

a silicon floor. (¢) A second oxidation step is applied to
obtain a silicon-dioxide floor. The growth rate of silicon-
dioxide decreases with increasing oxide thickness. Con-
sequently, the secondary oxidation is faster inside the
channel region than in surroundings, and the channel
height decreases as the growth progresses. The sec-
ondary oxidation is stopped when the channel height
is reduced from h 4 d to desired value h. The oxida-
tion times, which determine the heights h + d and h,
were found from computer simulations using the soft-
ware SUPREM. (d) A borofloat glass lid is bonded to
the make a sealed, hydrophilic, all-silicon-dioxide chan-
nel. Channels, 15 mm long, of heights h from 25 nm to
3 pm, widths from 20 pm to 500 um were realized. The
channels tend to collapse for the largest width to height
ratios. 25 nm high channels were realized with channel
widths up to 50 pm, similar to results reported recently
by Mao and Han [4].

By use of a surface profiler we have found that our
”oxidation, etch-stop, oxidation” sequence leads to an

Figure 4: Nanofluidic channel devices, fabricated on
100 mm silicon wafer substrates. (a) The 100 mm wafer,
containing 26 chips, each with 9 parallel nanonchannels.
(b) Zoom in on individual chips, showing the nanochan-
nels connecting inlet and outlet reservoirs. (c) A mi-
croscope picture of the liquid fronts, shown as the dark
areas, in a chip with 100 nm high channels. The smallest
marks on the chip are placed 25 pm apart.
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Figure 5: Measured capillary filling speed for milli-Q
water in nanochannels shown as a log-log plot of the
square L? of the front-meniscus position L versus time
for seven different channel heights h ranging from 25
to 3400 nm. All curves have the expected linear form
L? = at.

improved precision of +2 nm in the channel height h,
see Fig. 2.

The profile of the sealed nanochannels was assessed
by SEM inspection of cleaved samples. In Fig. 3 we
show cross-sectional images of 3.4 ym and 100 nm high
nanochannels.

3 Capillary filling speed

Our measurements by optical microscope and video
camera of capillary filling speeds include seven 50 pum
wide channels with heights ranging from 25 to 3400 nm,
thus extending previously reported height ranges, [2],
[3]. The position of the front meniscus during capillary
filling is denoted L(t). As expected from the combined
effect of capillary pressure and hydraulic resistance [2],

the square of the position increases linearly in time,
L2(t) = at, see Fig. 5. However, as seen in Fig. 6, for
channel heights h below 100 nm the measured slopes a
are systematically larger than the expected slope apyx-
The origin of this effect is currently under study.

4 Conclusion

In conclusion, a simple and well-controlled fabrica-
tion technique has been achieved, and in subsequent
measurements of capillary filling, we have identified a
threshold height of about 100 nm, below which devia-
tions from bulk fluidics are significant.
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Figure 6: Slopes a (see Fig. 5) for three different liquids (normalized by the theoretical bulk value apyy obtained
from contact angle measurements) as a function of channel height h. A systematic increase is observed for decreasing

h below 100 nm.
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