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ABSTRACT

Efficient mixing to promote chemical reactions is ex-
tremely desirable in lab-on-a-chip devices, but is dif-
ficult to achieve in the typical low Reynolds-number
flows. Numerical simulation of the high Peclet-number
case common in microfluidics is computationally chal-
lenging, and asymptotic solutions have proved useful in
understanding the interplay between convection and dif-
fusion in particular devices. Most mixing studies to date
have examined non-interacting species, so that the total
concentration of each is conserved. In this paper we in-
clude the effects of chemical reaction terms to describe
the infinitely fast reaction between two species. Ana-
lytical results identify two important timescales for the
yield of the product species: an initial Rhines-Young
shear-enhanced mixing time, and a long-time approach
of the yield to its final value. The latter regime is crucial
for high-efficiency microreactors, and is associated with
persistent structures in the mixer flow field.

Keywords: micromixing, microchemistry, Peclet num-
ber, asymptotic analysis.

1 INFINITELY FAST REACTIONS

We consider the infinitely fast reaction A + B →
D, whereby one molecule of species A reacts with one
molecule of species B to produce one molecule of the
product species D. We assume that the molecular diffu-
sivities of species A and B are the same, and write the
convection-diffusion-reaction equations for their respec-
tive concentrations cA(x, t) and cB(x, t):

∂cA

∂t
+ v · ∇cA − κ∇2cA = R(cA, cB), (1)

∂cB

∂t
+ v · ∇cB − κ∇2cB = R(cA, cB). (2)

The convective velocity of the (incompressible) fluid is
v(x, t), and the term on the right-hand side of the equa-
tions is a nonlinear function of cA and cB which models
the chemical reaction. The detailed form of the reac-
tion function is not important, provided it is the same
in both equations. In this case, a linear equation (see
(4) below) is satisfied by the difference between the con-

centrations of the species: define c(x, t) by

c = cA − cB .

While both cA and cB are concentrations, and hence
are necessarily non-negative, the new field c can have
both positive and negative values, depending on the lo-
cal excesses in concentration of species A over species
B, or vice versa. Indeed, given that the infinite speed
of reaction precludes the two species co-existing at any
one spatial position, it is possible to identify cA and cB

when only the field c is given:

cA = positive part of c =
1
2

(|c|+ c)

cB = − (negative part of c) =
1
2

(|c| − c)

Note then that the absolute value of c is given by

|c| = cA + cB , (3)

and the linear equation satisfied by c is found by sub-
tracting equation (2) from equation (1):

∂c

∂t
+ v · ∇c− κ∇2c = 0 (4)

Although the field c(x, t) can have both positive and
negative values we occasionally call the solution of this
linear equation the “concentration” c. Note that the
reduction of the two nonlinear equations (1) and (2)
to the linear equation (4) has been utilized in previous
work by, e.g., Cerbelli et al. [1].

The main result of this paper is a method for cal-
culating the total amount of the product species D as
a function of time, given the initial concentrations of
species A and B in a closed micromixer system. Our
general result is given in equation (8) below, and we then
proceed to derive an analytical formula for the product
as a function of time in a specific micromixer geometry
examined by us recently [2].

Since one molecule of species A is used to gener-
ate each molecule of the product species D, the total
amount of product in the mixer (assuming none at time
t = 0) must equal the reduction in the amount of species
A at that time, i.e.,

pD(t) =
∫ ∫

[cA(x, 0)− cA(x, t)] dx. (5)
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Here the spatial integration is over the entire mixer, and
pD(t) denotes the total amount of species D in the mixer
at time t. Equivalently, pD can be written in terms of
the reduction in species B:

pD(t) =
∫ ∫

[cB(x, 0)− cB(x, t)] dx, (6)

and by adding equations (5) and (6), and using equation
(3), the product may be calculated from the field c as:

pD(t) =
1
2

∫ ∫
[|c(x, 0)| − |c(x, t)|] dx. (7)

This form is especially convenient as it allows the cal-
culation of the total product from the solution of the
linear equation (4), rather than from the coupled non-
linear equations (1) and (2).

We normalize pD(t) by dividing by 1
2

∫ ∫ |c(x, 0| dx
to define the normalized total product p(t) :

p(t) = 1−
∫ ∫ |c(x, t)| dx∫ ∫ |c(x, 0)| dx (8)

Note that p(0) = 0, and (assuming that equal amounts
of species A and B are reacted) p → 1 as t → ∞.
Equation (8) allows us to calculate the total amount
of product species in the system by solving the linear
convection-diffusion equation (4). As an example, in
the next section we use an asymptotic solution for annu-
lar micromixers to explicitly calculate c(x, t), and hence
find the product p(t) as a function of time.

2 EXAMPLE: ANNULAR
MICROMIXER

The annular micromixer described in [2] uses mag-
netohydrodynamic forcing to pump liquids around the
annulus (Figure 1) . The two-dimensional analysis of [2]
is simplified in the case of high Peclet number and when
the channel width is much smaller than the mixer di-
ameter. Under the latter condition, the channel is mod-
elled as locally straight, and the full convection-diffusion
equation is reduced to

∂c

∂t̃
+

3
2

(
1− r̃2

) ∂c

∂φ
− ε

∂2c

∂r̃2
= 0, (9)

(see [2] for details). This reduction is equivalent to mod-
elling a Poiseuille flow in a straight channel, with the
spanwise coordinate r̃ equal to ±1 at the channel walls,
and r̃ = 0 in the center of the channel. The concentra-
tion is 2π-periodic in the streamwise coordinate φ, anal-
ogous to flow out of one end of the channel reappearing
at the other end. The variable t̃ is a dimensionless time
ωt, where ω is the convective rotation frequency of the
mixer. Finally, ε is a small parameter, inversely propor-
tional to the Peclet number Pe.
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Figure 1: Operation of the annular micromixer at three
times (neglecting diffusion).

The reduced equation (9) was shown in [2] to closely
match numerical simulations of the full convection-diffusion
equation; moreover its relatively simple form permits
an analytical solution. We assume that the initial con-
centration is independent of the radial variable r̃, and
depends only on the periodic variable φ. The initial
condition may thus be expressed as a Fourier series in
φ:

c (r̃, φ, 0) = Re
N∑

n=1

aneinφ, (10)

for complex Fourier coefficients an, with N being the
number of Fourier modes. Here Re denotes the real part
of the complex sum. It was shown in [2] that a solution
of equation (9) with initial condition (10) is given by

c
(
r̃, φ, t̃

)
= Re

N∑
n=1

ang
(√

nt̃
)×

× exp
[
inφ− 3

2
int̃− i

√
nf

(√
nt̃

)]
, (11)

with

f(t̃) =
3(1 + i)

2
1
µ

tanh
(−1 + i

2
µt̃

)
,

g(t̃) =
[
cosh

(−1 + i

2
µt̃

)]− 1
2

, (12)

and we have written µ = 2
√

3ε for clarity. Unfortu-
nately the solution (11) does not satisfy the physical
no-flux boundary conditions at r̃ = ±1, but the numer-
ical simulations presented in [2] show that this does not
appreciably affect the mixing measure. Consequently
we proceed to examine the prediction of equation (8)
for this case.
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Figure 2: Single harmonic initial condition as a func-
tion of φ: (a) The initial field c = cosφ for equation
(4); (b) initial concentration cA of species A; (c) initial
concentration cB of species B.

We consider two different initial conditions for c: the
first is a single Fourier mode, c(r̃, φ, 0) = cosφ; the sec-
ond is a step-function form for c(r̃, φ, 0). Recall from
section 1 that the concentration of species A is given by
the positive part of c, while the concentration of species
B is given by (minus) the negative part of c. Thus
the cosine initial condition for c corresponds to identical
concentrations of A and B situated in opposite halves
of the annulus, with each having zero concentration at
the initial interface between species, see Figure 2. We
show below that a closed form solution for p(t), the to-
tal amount of produce in the mixer at time t, may be
derived in this case. The second initial condition cor-
responds to (nearly) uniform concentrations of species
A and B in separate halves of the annular mixer, as in
Figure 3. In section 2.2 below we calculate p(t) from
equation (8) for this case also, and show it exhibits sim-
ilar scaling to the analytically-solvable single harmonic
case.

2.1 N = 1: an analytic formula for p(t)

When the angular dependence of c can be described
using just one Fourier mode (N = 1 in equation (11)),
the integral defining the total product p(t) in equation
(8)) may be evaluated in closed form, yielding

p(t̃) = 1−
√

πµ

3

[
cosh(µt̃) + cos(µt̃)

2
(
sinh(µt̃)− sin(µt̃)

)2

] 1
4

×

×erf

[√
3
2µ

√
sinh(µt̃)− sin(µt̃)
cosh(µt̃) + cos(µt̃)

]
. (13)

(Here erf denotes the error function). This is plotted as
a function of t̃ with the dashed (for ε = 2 × 10−2) and
solid (ε = 8.3× 10−4) lines in Figure 4. The short-time
behaviour of p(t̃) is

p(t̃) ≈ µ2t̃3

12
for µt̃ ¿ 1 (14)

and so the initial timescale for product formation de-
pends on the Rhines-Young shear-enhanced mixing of
lamellae in the mixer — this time scales as ε−

1
3 , i.e.

as Pe
1
3 with the Peclet number (see [2]). However the

long-time approach of p(t̃) to 1 as given by (13) is on
a timescale proportional to ε−

1
2 , i.e., Pe

1
2 . This longer

timescale becomes important because of the lack of shear-
enhanced mixing at the centre of the channel as dis-
cussed in [2] — the longer mixing time for this ‘persis-
tent structure’ [3] limits the formation of the product
species, and becomes relevant when high efficiency of
reactions is important.

2.2 N > 1: numerical integration

The initial condition in Figure 3 is generated using
N = 50 Fourier modes. In this case the integral in
equation (8) defining the total product p(t) must be
calculated numerically. Results of such numerical in-
tegrations are shown with triangles (for ε = 2 × 10−2)
and squares (ε = 8.3× 10−4) in Figure 4. While the ini-
tial evolution of p(t̃) is different to the single mode case
(solid and dashed lines), the long-term behaviour closely
mirrors that discussed following equation (13) above. In
particular, the comments regarding the timescales scal-
ing with Pe

1
3 (for early times) and the longer timescale

Pe
1
2 (for completion of the reaction) also appear to be

relevant in this case.

3 CONCLUSION

In summary, we have shown that the amount of prod-
uct species D generated by the infinitely fast reaction
A + B → D in a closed micromixer may be calculated
by solving the linear convection-diffusion equation (4),
and calculating the integrals in (8). (Note that the as-
sumption that the diffusivities of the species A and B
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Figure 3: Step function initial condition (approximated
using N = 50 Fourier harmonics) as a function of φ: (a)
The initial field c for equation (4); (b) initial concen-
tration cA of species A; (c) initial concentration cB of
species B.
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Figure 4: Total product p(t̃) as a function of dimension-
less time t̃ in the annular micromixer, using equations
(8) and (11). Dashed line (N = 1 single harmonic initial
condition) and triangles (step function initial condition,
N = 50) give p(t̃) for ε = 2 × 10−2. Solid line (single
harmonic initial condition) and squares (step function
initial condition) are for ε = 8.3× 10−4 .

are equal is crucial here). For a model of an annular mi-
cromixer considered previously [2], we use an asymptotic
closed form solution of the convection-diffusion equation
to calculate the amount p(t̃) of product species D in the
mixer. For a simple initial condition (Fig. 2) we find the
analytical formula (13) for p(t̃) and demonstrate the im-
portance of short- and long- timescales. Numerical inte-
gration for a different initial condition (Fig. 3) indicates
that this behaviour of p(t̃) may be quite typical.

Further work may examine the result of calculating p
from equation (8) for other micromixers, e.g. the chaotic
pulsed-diffusion model of [4], [5]. Of particular interest
would be the identification of multiple timescales for the
evolution of p(t̃) in such models or in experiments.

4 Acknowledgements

This work is supported by funding from Science Foun-
dation Ireland Investigator Award 02/IN.1/IM062. The
author acknowledges the hospitality of Prof. D. I. Pullin,
and helpful discussions with Dr. Thomas John.

REFERENCES

[1] S. Cerbelli, V. Vitacolonna, A. Adrover, and
M. Giona,“Eigenvalue-eigenfunction analysis of in-
finitely fast reactions and micromixing regimes in
regular and chaotic bounded flows,” Chem. Eng.
Sci. 59, 2125 (2004).

[2] J.P. Gleeson, O.M. Roche, J. West, and A. Gelb,
“Modelling Annular Micromixers,” SIAM J. Appl.
Math., 64, 1294-1310 (2004).

[3] M. Giona, S. Cerbelli, and V. Vitacolonna, “Uni-
versality and imaginary potentials in advection-
diffusion equations in closed flows,” J. Fluid Mech.
513, 221 (2004).

[4] A. Pikovsky and O. Popovych, “Persistent patterns
in deterministic flows,” Europhys. Lett. 61, 625
(2003)

[5] J. P. Gleeson, “Transient micromixing: examples
of laminar and chaotic stirring,” Phys. Fluids 17,
100614 (2005).

NSTI-Nanotech 2006, www.nsti.org, ISBN 0-9767985-7-3 Vol. 2, 2006512


	280.pdf
	2. МATERIALS AND METHODS
	3.1. Principle of CPM
	REFERENCES



	373.pdf
	CONCLUSION
	REFERENCES

	771.pdf
	Preliminary cytotoxic effects of application of an AC magnetic field were obtained in CaCo-2 cell media in contact with 0.15 mg/ml of magnetite/crosslinked dextran nanoparticles.  A decrease in cell culture viability of about 60 % was found upon the application of an AC magnetic field at 3.0 kA/m and 1.0 kHz for about 45 minutes. 

	546.pdf
	3. CONCLUSIONS

	825.pdf
	 
	Each step of the bioactive functionalization was confirmed by a novel CBQCA (3-4-carboxybenzoyl quinoline-2-carboxaldehyde) fluorescence method (3). CBQCA is inherently a non-fluorescent molecule but fluoresces well when attached to amine groups that arise from the aminated surfaces and the amines from bioactive group moieties.   

	1030.pdf
	ABSTRACT
	Acknowledgements
	References


	342.pdf
	ABSTRACT
	4  CONCLUSIONS
	 
	 
	Figure 4: UV-VIS spectra of silver colloidal solution mixed with bacteria.
	 
	Figure 5: Time evolution of the major SERS peak.
	 
	Figure 7A: Tapping mode AFM image of a roughened silver surface after the landing of crystal violet molecules and subsequent thorough washing. 
	 
	Figure 7B: Flattened view of the tapping mode AFM image of the same surface shown above.
	 
	5  REFERENCES
	[
	[
	[
	[
	[
	[
	[


	228.pdf
	A
	ABSTRACT
	INTRODUCTION
	RULE BASED MODELING
	CELLULAR COMMUNICATION
	CHEMICAL  SIGNALING
	CONCLUSION
	REFERENCE

	658.pdf
	INTRODUCTION
	MATERIAL AND METHODS
	The phytoplankton
	The nutrients
	The system

	RESULTS AND DISCUTION
	CONCLUSIONS AND PRESPECTIVES
	REFERENCES

	215.pdf
	Self-Assembled Soft Nanomaterials from Renewable Resources 
	 
	 
	ABSTRACT 
	 
	Keywords: organic soft materials, amphiphiles, self-assembly, lipid nanotube, renewable resources. 
	3   RESULTS AND DISCUSSION 





	281.pdf
	Introduction
	Figure 2: Fig 1(a) shows a TEM image of lath-like single cry

	705.pdf
	Demonstrative Applications of the Infusion Process
	3.1 Anti-Fouling and Release Applications
	3.2 Enhanced Interfacial Bonding and Adhesion
	3.6 Flexible Broad band Radiation Absorbing materials

	633.pdf
	1. INTRODUCTION
	2. TECHNOLOGY & PRODUCTS
	3. APPLICATIONS
	4.  CONCLUSIONS

	995.pdf
	Electrochemical Synthesis of Polyaniline




