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ABSTRACT 

 
In this research, confocal laser scanning microscopes 

(CLS) interface for micro-Raman spectroscopy system has 
been developed.  The potential of this system for 
characterization MEMS device is demonstrated by 
measuring Si membrane of a pressure sensor.  Mechanical 
stress is obtained by a shift of Raman peak, and profile of 
deflection is measured by CLS at same time. The 
relationship mechanical stress and defection in a small scale 
MEMS is clearly shown. 

 
Keywords: Raman spectroscopy, confocal laser scanning 
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1 INTRODUCTION 
 
The use of micro-electro-mechanical system (MEMS) is 

becoming popular in many application.  To predict fracture, 
buckling of structure, etc., knowledge of the mechanical 
stress properties within MEMS devices is very important, 
because stress increase may cause dislocations, film 
cracking, and degradation of gate oxide qualty.  Analytical 
or numerical models are often used.  The experimental 
characterization of the mechanical stress properties, either 
stand alone, or as a verifying tool for analytical/numerical 
approach, is equally important, but there are not many 
techniques available that are capable of measuring the 
stress locally on surface as small as that of a typical MEMS 
device.   

 
Several methods have been used to characterize stress 

and strain in semiconductor devices.  The most important 
are X-ray diffraction, transmission electron microscopy 
(TEM), and micro-Raman spectroscopy.  All of these 
methods have advantage and disadvantages.  X-ray 
diffraction techniques is very sensitive but the technique is 
cumbersome and lacks high spatial resolution.  TEM 
methods reach spatial resolutions of a few nanometers.  But 
the main disadvantages here are the destructive sample 
preparation, and the measurement time is often in the range 
of weeks or even months.   

 
Raman spectroscopy allows measurement of stress in 

crystalline material.  It is well known that micro-Raman 

spectroscopy can be used to characterize stresses with 
micron spatial resolution.  Several researcher have used 
micro-Raman spectroscopy to measure the mechanical 
stress in MEMS structure.[1-5] 

 
On the other hand, the shape measurements are also 

important in MEMS characterization.  Measurement of 
curvature and deflection, for example, yield average strain.  
Confocal Laser scanning Microscopes (CLM) are very 
attractive for three-dimensional imaging of microstructures 
because of its high lateral and axial resolution and its 
optical sectioning capability.  So, for quality preservation in 
MEMS structure, CLM is best suited.  By combining with a 
micro-Raman spectroscope, not only shape measurement 
but also mechanical stress analysis in the same observation 
area on same time can be performed by CLM.  In this study, 
we demonstrate mechanical stress and shape profile 
measurements using CLM interface for Raman 
spectroscopy and that this system is reasonable and helpful 
to the MEMS designer. 

 
We have shown with an example that CLSM with a 

micro-Raman spectroscopy interface system has much to 
offer for investigation in MEMS. 

 
2 EXPERIMENTAL 

 
The principle optical layout of CLM with a micro-

Raman spectroscopy interface system is shown in Fig. 1.  
Light source is GaN diode (408 nm) laser for CLM, and 
spatial resolution is 0.14 μm.  The micro-Raman system 
consists of optically pumped semiconductor laser (Coherent, 
sapphire, 488 nm), edge filters to remove the scattered 
excitation light, a single monochromator, and a 
thermoelectrically cooled charge-coupled device detector. 
The experiment was carried out in the backscattering 
configuration.  Focal length of spectrometer is 0.25 m and a 
1800 l/mm grating was used, so nominal resolution is 0.2 
cm-1.  The laser power was limited to about 0.1 mW to 
minimize sample heating.  The 50 times magnifying 
objective lens was used and the focused laser spot size was 
approximately 1 m in a diameter.  The sample can be 
moved under the microscope with a computer controlled 
XY-stage.  This allows us to monitor the stress at different 
positions on the surface. 
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Figure 1: Schematic diagram of the CLM with micro-
Raman spectroscopy interface. 

 

Figure 2 shows a typical Raman spectrum of crystaline 
silicon.  When the sample is unstressed (no applied strain), 
a reference spectrum is measured.  When the device is 
placed in a stressed state, the Raman spectrum displays a 
shift in a frequency with respect to the reference spectrum. 
This frequency shift is a result of the induced stress.  
Ganesan et al. was one of the first to show the effects of 
strain on diamond structured crystals.[6]  In the absence of 
strain, the first order Stokes Raman spectrum of diamond-
type materials exhibits a single peak which corresponds to 
the q = 0 triple degenerate optical phonons.  The Raman 
wave-number of the (stress free) silicon is about 521 cm-1.  
In order to determine this frequency, the peak is fitted with 
a Lorenz function.   
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Figure 2: Raman spectrum of crystalline silicon. 

 
To show the potential of this system for the 

characterization of MEMS device, a crystalline silicon 
pressure sensor with membranes structure (MKT TAISEI 
Co. LTD. MS30) was measured.  Figure 3 shows a 
photograph of the pressure sensor.  The membrane area and 
thickness were about 2 × 2 mm and 20 μm, respectively.  A 
measurements were performed on the top side of membrane  
under various pressure, as indicated in Fig. 3.  Si membrane 
structure is bended by pressure from bottom side. 

Measurements were performed on the top side of the 
membrane. 

 

 
Figure 2.  Photograph of a pressure sensor.  
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Figure 3: Picture of a pressure sensor.  Si membrane 
structure is bended by pressure from bottom side. 
Measurements were performed on the top side of the 
membrane. 

 

3 RESULT AND DISCUSSION 
CLM image of pressure sensor are given in Fig. 4.  The 

profile of deflected membrane is shown in Fig. 5.   
 

 

 
Figure 4: CLM image of pressure sensor 
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Figure 5: Three dimensional image of deflection.  

 
The measurement results of deflection and Raman 

frequency shift on center line of membrane is given in fig. 6.  
Fig. 6 (A) shows profile of deflection measured by CLSM 
as shown in Fig 5.  Figure. 6 (B) shows the change of 
Raman frequency from zero stress value, , as a function 
of the position on the center line.  A positive shift (> 0) 
indicates compressive stress, while a negative shift (> 0) 
indicates tensile stress.  Tensile stress in the center of the 
membrane and compressive stress near the edge are clearly 
found.  The relation between stress and Raman frequency is 
in general rather complex.  Raman frequency depends on 
all strain tensor coefficients and on material constants.  
However, in some case, the relation becomes simply liner 
relation.  For example, for biaxial stress (xx + yy) in the 
Si(100) plane, which can often be assumed to be the case in 
MEMS, their relation become [7]  

 
][cm434 1 ��yyxx  . (1) . 

 
According to eqn (1), the maximum compressive stress 

at the edge and tensile stress at the center of the membrane 
are 120 MPa and 110 MPa, respectively. 
 
Figure 7 shows deflection profiles with various pressure.  
The deflection of membrane increase with an increasing 
pressure. 
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Figure 6: (A): Deflection profile measured by CLSM.  

(B) : Shift of Raman frequency from zero stress value, , 
as a function of the position on the center line.   

 
 

 

 
 

Figure 7: Deflection profile at center line with various 
pressure. 

 
 

Figure 8 is enlarged defection profile and around the 
edge of membrane on center line (pressure in (a) > pressure 
in (b)).  The deflection in (a) is larger than that in (b).  It is 
clearly showed that the deflection and corresponding to 
pressure increase with an increasing pressure.   
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Figure 8: Enlarged defection profile and around the 
edge of membrane under different pressure (pressure in (a) 
> pressure in (b)) 

 
 

Figure.9 shows a relation between maximum of deflection 
in the center of membrane, Zmax,  and  at edge and center.  
The corresponding to stress increase linearly with an 
increasing Zmax.  The present result indicate that the relation 
between stress and defection can be understood by small 
deflection theory within the pressure in our experiment, 
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Figure 9: Relationship between tensile stress at edge and 

largest deflection, Zmax, at center of membrane. 
 
 

4 CONCLUSIONS 
 
The relationship mechanical stress and defection in a 

small scale MEMS is clearly demonstrated.  We can obtain 
both stress and deflection at same time.  It has been shown 
that CLM with a Raman spectroscopy interface system has 

much to offer for investigation of mechanical stress in 
silicon MEMS device.   
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