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ABSTRACT 
 
We present a method of fabrication of Scanning 

Electrochemistry Microscopy (SECM) probes using 
multiwalled Carbon Nanotube (CNT) coated with Parylene 
C as a nanoelectrode. Parylene is used to achieve a 
conformal pin hole free insulating layer, which is a 
prerequisite for simultaneous topographical and 
electrochemical imaging applications. A controlled length 
of the carbon nanotube is exposed, to act as the 
electrochemically active surface, by local removal of 
insulating polymer. Calibration of these probes is done by 
cyclic voltammetry in aqueous solution. 
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1 INTRODUCTION 
 
Electrodes of nanometer dimensions provide new tools 

and opportunities in the area of dynamic electrochemistry. 
The small electrode dimensions lead to high current density 
at the electrode surface, thus enabling study of mass 
transport, molecular interaction and fast heterogeneous 
electron transfer kinetics at the nanometer scale. The 
ultimate goal would be the measurement of the activity of a 
single redox-enzyme coupled to the nanoelectrode. 

Combining the unique structural, mechanical and 
electrical properties of carbon nanotubes, with the spatial 
resolution and topographical sensitivity of Atomic Force 
Microscope, will allow probing of local cellular 
environments leading to innovative biological applications 
and sensors. Several methods have been reported for 
fabrication of nanoelectrodes for electrochemistry [1, 2, 3]. 
However, most fabrication techniques, while challenging, 
cannot predict the exact geometry of electrode at the 
nanometer scale. We demonstrate a reproducible method of 
fabrication of nanoelectrode probe for Scanning 
Electrochemistry Microscopy with controllable electrode 
geometry 

 
2 EXPERIMENTAL DETAILS 

 
2.1 Probe preparation 

A multiwalled Carbon nanotube was mounted on gold 
coated Atomic Force Microscope (AFM) tapping mode 
cantilever in a Scanning Electron Microscope (FEI 

NovaSEM 200©). Prior to the deposition of a conformal, 
pinhole free, insulating layer (~300 nm) of Parylene C, by 
chemical vapor deposition, on assembled structure, the 
electrical contact resistance between the CNT and the gold 
surface was measured and found to be typically in the range 
of few hundred kilo Ohms [4]. Controlled lengths, ranging 
from a few nanometers up to a micron, of Carbon nanotube 
were exposed by removing the Parylene from the probing 
end. This was achieved by heating of selected length of the 
polymer coated nanotube by controlled introduction into the 
focal spot of a plane polarized CW green laser (532 nm). 
Detailed information about controlled removal can be found 
elsewhere [4]. 

 
Figure 1: SEM micrograph of a Polymer coated CNT 

with the probing end free of polymer. 
 

                   
 
Figure 2: TEM micrograph of probing end of a probe 

showing a single MWNT free of polymer 
 

2.2 Probe Characterization     

Preliminary electrochemical characterization of the 
probes was done by cyclic voltammetry. With the help of 
an inverted optical microscope, only the polymer coated 
Carbon nanotube, with the exposed end and a few microns 
of the polymer coated AFM cantilever, was dipped in a 
glass capillary containing a 0.8 milli Molar solution of 
Ferrocenylmethyl-Trimethyl Ammonium(FcTMA+ ) and 
hexaflorophosphate (PF-

6) (aqueous) as counter ion (no 
supporting electrolyte was used). A potentiostat (CHI 
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Instruments©) was used to cycle the potential applied to the 
electrode between 0.2 to 0.6 volts with respect to a 
grounded silver/sliver chloride electrode. The entire 
experimental setup was inside a grounded Faraday’s cage. 

 
2.3 Results and Discussion 

Preliminary results indicate that the steady state 
electrochemical current (scan rate 0.005V/s sample interval 
0.001 V) scales with the length of the electrode, as shown 
by the steady state voltammograms of two electrodes of 
different lengths (figures 3 &4). 

Figure 3: Averaged Steady-state voltammograms of 
FcTMA+  with electrode length of ~1 micron. 
 

Figure 4: Averaged Steady state voltammograms of 
FcTMA+ with electrode length of 10 nm. Fit carried out 
with Butler-Volmer kinetics. 

 
 The obtained voltametric curves can be described by 

Butler Volmer kinetics, showing the high electron transfer 
rate for these electrodes. Values obtained for heterogeneous 
rate constant (k) are in good agreement with published 
literature [5].Within scanned potential window range, the 
diffusion limited plateau was not observed in the 
voltammograms. This could be attributed to enhanced 

diffusion caused by the nanoscale dimensions of the 
electrode or due to the leakage of the electrolyte, over a 
period of time, between the CNT and the polymer coating.  

 Thus further characterization of probe and its geometry 
is being done before its experimental application as SECM 
probe. 

 
3 CONCLUSIONS 

 
We have presented a reproducible fabrication method 

for nanoscale electrodes, with controllable geometry. We 
have obtained steady state electrochemical current and a 
high rate of electron transfer through the CNT. The 
nanoelectrode allows probing of fast electrode kinetics with 
relatively high steady state current density values and 
coupled with the spatial resolution and topographical 
sensitivity of Atomic Force Microscope will be a superior 
SECM probe 

 
4 FUTURE PLANS 

 
The use of carbon as electroactive surface limits the 

potential range over which electrode can function. A way to 
overcome the limitation, imposed by carbon, would be to 
replace the CNT by a metal nanowire of identical 
dimensions.  
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