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ABSTRACT 
 
A CMOS electronic microarray device was used to carry 
out assisted self-assembly of quantum dots into multilayer 
structures. CMOS electronic microarrays produce 
reconfigurable DC electric fields that allow DNA, 
proteins and other charged molecules to be rapidly 
transported from the bulk solution and addressed to any 
activated site on the array surface. Such a device was now 
used to carry out rapid highly parallel assisted self-
assembly of biotin and streptavidin derivatized quantum 
dots into multilayer structures. Nanoparticle addressing 
could be carried out in 15 seconds or less, and was 
monitored by changes in fluorescence as each quantum 
dot layer was deposited. Some final multilayered 3D 
nanostructures were examined by SEM. 
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INTRODUCTION 
 
Considerable efforts are being carried out on the 
development of self-assembly processes for creating 
higher order structures from nanoscale components [1-6]. 
To this end both passive and active types of Layer-by-
Layer (LBL) self-assembly processes have been used to 
make three dimensional layered structures which can 
have macroscopic x-y dimensions [7-18]. In cases where 
patterned structures are desired, the substrate material is 
generally pre-patterned using masking and a 
photolithographic process [19, 20]. Other approaches to 
patterning include the use of optically patterned ITO 
films and active deposition of the nanoparticles [21, 22]. 
To date, limitations of both passive LBL and active 
assembly processes provide considerable incentive to 
continue the development of better paradigms for 
nanofabrication. Over the past decade electronic 
microarray devices, produced by a top-down 
photolithography process, have been developed for DNA 
diagnostic applications. These electronic microarray 

devices which produce reconfigurable electric fields on their 
surfaces are first used to address and bind negatively charged 
biotinylated DNA molecules to selected test-sites on the 
microarray. Samples containing unknown DNA sequences are 
now applied to the array, and the target DNA sequences are 
then rapidly transported and selectively hybridized to the 
DNA sequences bound at the specific test-sites [23-31]. These 
devices are thus able to direct and accelerate the self-
assembly or “bottom-up” process of DNA hybridization 
occurring on the microarray. In addition to the directed 
transport and addressing of biomolecules, the ability of 
electronic microarrays to carry out the rapid patterned 
deposition of charged nanoparticles was also demonstrated 
early in the development of the technology [24]. Ultimately, 
electronic microarrays have been used to carry out transport, 
addressing and selective binding of a variety of charged 
biomolecules such as DNA, RNA, biotin/streptavidin, and 
antibodies [34]; nanoparticles [24, 32-34]; cells [35] and even 
20 micron sized light emitting diode (LED) semiconductor 
devices [36-40]. A first important feature of electronic 
microarrays is the permeation layer. This porous hydrogel 
structure overlying the electrodes allows relatively high DC 
electric field strengths to be used for rapid electrophoretic 
transport of molecules and nanostructures, while protecting 
the more sensitive DNA, proteins, or nanostructures from the 
adverse effects of the electrolysis products generated at the 
electrodes [23-31]. A second feature of electronic array 
devices is that they may be designed in a wide variety of 
shapes and sizes. Arrays have been fabricated in sizes from 2 
mm x 2 mm to over 2.5 cm x 2.5 cm, with 25 to 10,000 
electrodes and with electrode structures which range in size 
from 10 microns to several millimeters. A third feature is that 
sophisticated CMOS control elements can be integrated into 
the underlying silicon structure of electronic microarrays 
which allows precise control of currents and voltages to each 
of the individual microelectrodes on the array [41]. 
 

 
METHODS 

 
Nanoparticle layering experiments were carried out using a 
400 site CMOS microarray device (Nanogen, San Diego, 
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CA). This microarray device is able to independently 
output currents to each of the 400 different electrodes (54 
micron diameter, in 25 columns by 16 rows) at up to 1 µA 
at 5 volts. Surrounding the 400 test-site microelectrodes 
are four large counter electrodes which encompass the 
inner electrode array (Figure 1).  
 

 
 
Figure 1 – The CMOS microarray (5mm x 7mm) with 
four hundred 54 micron test-site microelectrodes and four 
large perimeter counter electrodes used to produce 
electric field geometries that encompass the whole 
microarray surface area (~ 4mm x 6 mm). 
 
The 400 site CMOS array is coated with a 10 µm thick 
polyacrylamide gel permeation layer which is 
impregnated with streptavidin. The CMOS microchip 
array is flip-chip bonded onto a ceramic platform, which 
then is mounted onto the CMOS controller system. The 
CMOS controller system is itself mounted under an 
epifluorescent microscope system with associated CCD 
camera and imaging system (Figure 2). 
 

 
 
Figure 2 - CMOS controller system with fluorescent 
microscope imaging system. 
 
This allows the nanoparticle addressing and deposition 
process to be monitored both electrically and optically in 
real time. The CMOS controller is run by a laptop 
computer. Standard procedures were developed to 
determine the optimal parameters for parallel 3D 

nanoparticle layering using the 400 site CMOS microarray. 
The array device was prepared by first washing it several 
times with ultra-purified water to remove a protective 
carbohydrate layer from the permeation layer. After washing, 
the permeation layer surface was reacted with a 20 µl of a 2 
µM Biotin Dextran (Sigma B-9264) solution for 30 minutes. 
The array was then finally washed with a 100 mM L-
Histidine solution. To determine optimal addressing 
(deposition) conditions, the microarray device was 
programmed to be activated in columns with currents varying 
from 0.025 µA to 0.4 µA in 0.025 µA increments. Since the 
quantum dots used in the experiments have a net negative 
charge, the electrodes at the desired addressing sites on the 
array were biased positive, and the larger counter electrodes 
on the perimeter of the device were biased negative. 
Generally, a group of alternating columns on the array would 
be activated in parallel at the different current levels and 
addressing times, while the intervening columns of electrodes 
were not activated and thus served as negative controls for the 
nanoparticle addressing and binding process. Array 
addressing was carried out using 10 µl of 100 mM L-
Histidine buffer, containing from 1-10 nM of the derivatized 
quantum dots. The two types of derivatized quantum dots 
used in the nanoparticle layering experiments being described 
were red fluorescent quantum dots derivatized with biotin 
(Quantum Dot, Em 605 nm) and yellow-green fluorescent 
quantum dots derivatized with streptavidin (Quantum Dot, 
Em 565 nm). The biotin-streptavidin ligand binding reaction 
allows the two different types of fluorescent nanoparticles to 
be bound to each other, but nanoparticles of the same type do 
not bind to each other.  
 
The nanoparticle addressing, binding and layering 
experiments were carried out as follows: (1) About 20 µl of a 
10 nM solution of streptavidin quantum dots (green 
fluorescence) in 100 mM L-Histidine was placed on the 
microarray and the selected columns of electrodes were 
activated at the different current levels (0.025µA -0.4 µA), 
with addressing times of 5, 15 and 30 seconds. (2) The array 
was then immediately washed (manually) three times with 
100 mM L-Histidine, which takes less than one minute. 
Epifluorescence (Em 565 nm) monitoring of the array was 
carried out during the process. (3) About 20 µl of a 10 nM 
solution of 40 nm biotin nanoparticles (red fluorescence) in 
100 mM L-Histidine was placed on the array and selected 
electrodes were activated (currents form 0.025-0.4 µA, with 
addressing times of 5, 15 and 30 seconds). Epifluorescence 
(Em 605 nm) monitoring of the array was carried out during 
the process. (4) The array was then immediately washed three 
times with 100 mM L-Histidine. (5) Steps 1-4 were repeated 
to achieve desired number of nanoparticle layers, and 
epifluorescence (red and green) monitoring of the array was 
carried during the whole process. (6) The array was finally 
washed several times with deionized water to remove L-
Histidine.  

400 Test Site 
CMOS 

Microarray 

  
RESULTS 
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In order to determine optimal conditions for quantum dot 
nanoparticle layering, experiments were carried out with 
one, five, ten, fifteen and twenty addressing at 0.30 µA 
for 15 seconds. Figure 3 shows the fluorescent 
microscope imaging results for the quantum dot layering 
experiment 
 

 
 
Figure 4 - Experiment showing one, five, ten, fifteen and 
twenty addressing with biotin and streptavidin quantum 
dots. 
 
In order to show SEM images of quantum dot layering, 
some further experiments were carried out in which 
quantum dots were layered over an underlying layer of 40 
nm nanoparticles. The SEM image of these multiple 
layers is shown in Figure 4.  
 

 
 

Figure 4 - SEM image of quantum dots overlaying 40 nm 
nanoparticles   

 
We have shown that electric field assisted self-assembly 
of twenty multiple layer quantum dot structures could be 
carried out in a rapid and highly parallel format using a 
CMOS electronic microarray device. In this process, 
efficient nanoparticle addressing/deposition was achieved 
in 15 seconds or less. With a washing step of about 45 
seconds, the total time for creating a nanoparticle layer 

was about one minute. Thus, the twenty layer nanopaticle 
structures could be completed in less than thirty minutes. The 
optimal electronic addressing window for creating high 
quality 3D layered structures appears to be at current levels in 
the 0.25uA to 0.40uA range. Overall, the use of a 
microelectronic array device for assisted self-assembly 
represents a unique example of combining “top-down” and 
“bottom-up” technologies into a potentially useful 
nanofabrication process. Such a process may be useful for the 
hierarchal assembly of integrated nano/micro/macrostructures 
for a variety of electronic, photonic, materials and other 
applications. 
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