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ABSTRACT

A semi-continuum model is constructed for the analysis

of fcc crystal nanofilms to study the size dependence of the

elastic properties. Unlike the classical continuum theory,

the current model directly takes the discrete nature in the

thickness direction into consideration. In-plane You

modulus, and in-plane and out-

investigated with this model and it is found that the values

of the elastic moduli (

ratios) depend on the film thickness and approach the bulk

value asymptotically.
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1. INTRODUCTION

Nanostructures have found unique features and benefits

in various areas due to their small dimension. Some

applications involving different nanostructured materials have

already begun to emerge, especially with nanofilms as high

capacity information storage device or wear resistance coating.

These applications have brought new challenges to the

research community whether the physical properties of

materials at nanoscale differ from their bulk counterparts. It is

learned that most knowledge of bulk material behavior fails to

describe material response in the nanometer range
1-3

. In order

to predict deformation, stress, and other mechanical response

of nanomaterials at the application, it is required to have an

in-depth understanding of how the mechanical properties of

nanomaterials depend on their characteristic size. Both

theoretical work and experimental measurement have been

conducted in the intension to answer those questions. Early

theoretical predictions4,5 and experiments6,7 showed increases

in elastic modulus as the constituent size decreased while

recent experiments showed either no dependence on

thickness
8-10

or decrease in modulus
11
. In view of the foregoing,

it is essential to study the dependence/independence of

mechanical properties of the nanomaterials on their

characteristic lengths. In this research, the attention is directed

to nanofilms.

For nanofilms, the continuum approach can be applied to

the in-plane dimensions in order to achieve simplicity.

However, the dimension in the thickness direction is in the

order of the atomic scale which does not allow the use of the

averaging process to derive the effective continuum properties.

Some researchers
12

proposed a semi-continuum model for

simple cubic crystal structure, which is sodium chloride (NaCl)

type materials. However, not so many materials possess simple

cubic structure, and thus, in this paper, a semi-continuum

model is constructed for the analysis of face-cubic-center (fcc)

crystal structure nanofilms and the size dependence of the

elastic moduli will be studied with this model.

2. SEMI-CONTINUUM MODEL

In semi-continuum model, the dimensions of the in-plane

direction are assumed to be much larger compared to the

out-plane dimension. Fig. 1 shows the geometry of a nanofilm

with uniform thickness h. Along the thickness direction, there

are 2N+1 (N=1, ic layers. The atoms on k and k+ 1/2

layers are denoted as the same atomic layer, i.e. k
th

atomic

layer.

Each atom interacts with its nearest and second-nearest

atom neighbors and the interactions are represented by linearly

elastic springs with spring constants 1 and 2
13

,

respectively. It is assumed that the interactions other than the

nearest and second-nearest atom pairs are not significant and

negligible. Choose an arbitrary atom as the origin of the

Cartesian coordinate system and denote unit vectors along the
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x, y, and z axes by 1e , 2e , and 3e , respectively. The

position of any atom can be denoted as

( 2/1, iix , 2/1, jjy , )2/1,( kkz ) , whose position vector is

321 )2/1,()2/1,()2/1,( eakkeajjeaiir . 1/2 is

used to represent atoms which are sitting at the middle of the

cubic face.

Due to the periodicity of the material, at a representative

atom point ),,( )(k
ji zyx , a representative unit cell of fcc

crystal may be chosen as shown in Fig. 2. Except for the top

layer, right most face layer, and the back most face layer, the

nanofilm can be obtained by marching the representative unit

cell with step size of lattice constant, a, from left bottom atom

in the front surface along x, y, z directions.

Fig. 1. A representative model of nanofilm

In view of the large in-plane dimensions of nanofilm, we

attempt to employ classical continuum treatment in the x and y

dimensions. This treatment is based on the long-wave

assumption that displacements vary slowly from atom to atom

in each layer. Therefore, the discrete displacements
)(

,
k
jiu ,

)(
,
k
jiv , and )(

,
k
jiw of atom ),,( )(k

ji zyx can be expressed with

continuous functions of x and y, i.e., ),()()(
, ji

kk
ji yxuu ,

),()()(
, ji

kk
ji yxvv and ),()()(

, ji
kk

ji yxww . The discrete

nature along the thickness direction is still kept. The

deformation energy )(
,
k
jiU of the representative unit cell

shown in Fig. 2 can be written as

971458695149147

75651461488596

98877610993106

62545211661129

9153511013121
)(

,

UUUUUU

UUUUUU

UUUUUU

UUUUUU

UUUUUUU k
ji

where 21U , 61U ,..., represent deformation energies due to

the stretching/shortening of the spring between atom 1, 2, and

1, 6,..., respectively.

Fig. 2. Unit cell of fcc crystal model

Because displacements in each atomic layer vary slowly

from atom to atom, a two-term Taylor series expansion can be

used. Thus, the displacement )(
,1

k
jiu at ( 1ix , jy , )(kz ) can be

approximately expressed in terms of the displacement )(
,
k
jiu at

( ix , jy , )(kz ) and deformation energy
21U can be written as
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. The stretching of the nearest neighbor spring between atom 1

and atom 6 can be written as

22
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By using the binomial expansion, deformation energy
61U

due to the stretching of the nearest neighbor spring between

atom 1 and atom 6 is obtained as
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Other interaction energies can be expressed in similar way.

If the deformation energy of the representative unit cell

at k
th

atomic layer is denoted by )(
,
k
jiU and the deformation

energy of the representative element at (xi , yj , z
(N)

) of the top

layer is denoted by
top

jiU , , the total deformation energy of the

nanofilm totU , can then be approximated as

i j

top
ji

i j k

k
jitot UUU ,
)(

, .

3. ELASTIC MODULI

Define the strains in the k
th

atomic layer as

x
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Thus, the strain energies of the springs inside the unit cell can

be rewritten in terms of strains. Moreover, for a simple tension

in x direction, the displacements at each atomic layer can be

represented as

o
kkk kayxwyvyxvxuyxu ),();(),();(),( )()()(

Thus, the non-zero strain terms are
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Considering the volume element haa of the nanofilm,

the average strain energy density of this volume element at the

in-plane location (x, y) is defined as

haUUyxW
N

Nk

top
ij

k
ij

2
1

)( /)(),(

where the thickness h is taken to be aN )2(
2
1 . For simple

tension, 0
yy

yy

W and 0
zz

zz

W , in combined with

the conditions that the stress in y and z direction should be zero,

it could be deduced that
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x direction could be

obtained as
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For the extreme case ( N ),
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4. DISCUSSION AND CONCLUSION

From the semi-continnum model, it could be noticed that

the elastic moduli of nanofilms depend on the film thickness,

which is the total number of atomic layers. However, it is not

so clear whether the elastic moduli decrease or increase as the

nanofilm becomes thicker. In order to clarify the size

dependence of the elastic moduli, the numeric values of spring

constants representing the interaction between the nearest and

second-nearest atom pairs should be obtained first. Take single

crystal fcc copper as an example, lattice constant is 615.3

0.42
14
, respectively. The spring constants ( 1 , 2 ) could be

calculated from equation (3) in addition to the Young

of the bulk copper, which

corresponding to the extreme case ( N ).

Fig. 3. The relation between the elastic moduli and

numbers of atomic layers

With the attained values of spring constants, the size

dependence of elastic moduli could be easily obtained from

equation (2) as shown in Fig. 3. It could be observed that the

elastic moduli (i.e. in- -plane and

out-

numbers of atomic layers increase. Moreover, the anisotropic

behavior of in-plane and out- xy , xz )

is observed even though fcc crystal structure material should

behave the same along [100] and [001] axes. The anisotropy is

induced by the finite size in the thickness direction since the

anisotropic behavior becomes less significant as the total

ratios approach the same bulk value.
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