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ABSTRACT

This paper presents the methods enabling VHDL
simulation of digital circuits taking into account SEUs
generation and propagation. The way of the VHDL
model conversion and the SEUSIM software library that
allows simulating the operation of digital circuits to-
gether with SEUs impact is described. The SEUSIM li-
brary is written in pure VHDL so it can be used by most
VHDL simulators including ModelSim, Active-HDL and
open source project gHDL. The worked out methods and
tools are applied to the simulation of control system of
neutron radiation monitoring device. The results of sim-
ulation are compared with measurements of real circuit
exposed to neutron radiation.
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tion influence

1 INTRODUCTION

The SEEs (Single Event Effects) are caused by ele-
mentary particle interaction (ionization) with semicon-
ductor structure [1][2][3]. They can be destructive for
semiconductor devices (Single Event Gate Rupture, Sin-
gle Event Burnout, Single Events Latchup), however
non-destructive SEEs called SEU (Single Event Upsets)
resulting of bit flips in flip-flops and memory cells seem
to be the main problem in forthcoming years [4][5]. The
SEU hazard is approximated to rise up about ten times
every five years, then much faster than complexity of
the integrated circuits (two times every two years ac-
cording to the Moore’s law). Due to reduction of fea-
ture size the SEUs play an increasing role in failures ob-
served during operation of digital circuits, particularly
in environments with remarkable radiation level (avion-
ics, nuclear industry, High Energy Physics instrumenta-
tion etc.). In a few years SEUs will significantly affect
the digital electronics not only in these special radiation
environment but at the normal operating conditions as
well. Therefore the countermeasures against SEUs gains
importance as technology feature size drops down. The
electronic system can be build using radiation-hardened
semiconductor devices [6] but they skyrocket the sys-
tem cost [7]. Methods that allow the application of
commercial off-the-shelf (COTS) electronic components

seem to be much more adequate for commercial electron-
ics. Those methods are based on hardware and software
redundancy that allows detecting and correct radiation
influenced SEUs during system operation, making such
a system radiation-tolerate.

The design of radiation-tolerate systems require the
simulation tools that can predict the behavior of radia-
tion exposed circuits. The interactions between elemen-
tary particles and semiconductor crystal, that is a source
of SEUs, have a random nature described by exponential
distribution of density of probability. The simulation
of SEUs is usually performed on microscopic level with
application of physical based, multi dimensional mod-
els of semiconductor device [1][8][9][10]. Such tools are
very valuable when the device is optimized for radiation
hardness in the factory but are useless for the designers
of FPGA based and microprocessor systems. Those de-
signers need tools that can simulate the behavior of the
whole system [11]. For this purpose the specialized lan-
guages for description of digital circuits (like VHDL and
Verilog) are commonly used. . On the other hand the
widely used simulators for simulation of digital circuits
(ModelSim, Active-HDL, gHDL) are purely determinis-
tic, their operation is based on evaluation of signals and
scheduling events.

Therefore the method for simulation of the digital
whole system together with SEU generation using com-
mon languages and simulation tools is required.

2 VHDL MODEL OF SEU

The occurrence of SEU is a random process described
by exponential density probability (1). The equation
(1) allows calculating the probability of SEU occurrence
during given time t.

p(t) =
1

τ
e−

t
τ F (t) =

∫ t

0

p(t)dt = 1 − e−
t
τ (1)

The τ parameter is a time after that the probability of
SEU occurrence is F (τ) ∼= 0.632. It depends on kind
of particle and particle energy. It can be estimated for
given semiconductor technology on the base of measure-
ments in destination environment. The fig. 1 presents
the histogram of SEU frequency in 1MB SRAM mem-
ory exposed to the constant neutron flux coming from
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Figure 1: Histogram of SEU occurrence frequency in
SRAM memory (1Mb) exposed to 241AmBe source

241AmBe source. The τ estimated from this data for the
whole memory is τ ∼= 297s.

Using random numbers generator it is possible to
generate SEUs in VHDL program in a stochastic way.
Having the probabilistic variable random with uniform
distribution of probability density in the range of (0, 1)
the SEU can be drown from condition (2).

random < F (t) (2)

The fulfilled condition (2) generates SEU during the
time period t. However the direct VHDL implemen-
tation of equation (1) can not be possible, since not
all VHDL simulators distributes ieee.math real library
that implements function random (random is called
uniform in the ieee.math real library) and ex.

The SEUSIM library implements two different ran-
dom number generators. First one is a pseudo-random
generator based on RANROT W [12] program trans-
lated to VHDL function. This random number genera-
tor has 63 bits resolution and uniform distribution. It
has to be initiated by seed. Initialization by the same
seed generates the same pseudo-random sequence help-
ing to debug the system. The second random number
generator uses Linux device /dev/random to get ran-
domness. This method is very fast and really random in
contrast to the first one. The exponential function in (1)
can be substituted in VHDL by simpler to implement
function (3).

F (t) = 1 −
1

1 + t
τ

+ 1

2

t2

τ2 + 1

6

t3

τ3

(3)

The accuracy of the approximation (3) is better than
0.5% for all values of t. For typical operating conditions
(when the operation cycle t of the circuit is much shorter
than τ) the equation (3) can be even further simplified
to the form (4).

F (t) = 1 −
1

1 + t
τ

=
t

t + τ
(4)

The SEUSIM library includes function readSEU that
draws the SEU occurrence for signals of std logic vector

type. The readSEU function is called during each read-
out of the signal. It scans the signal history and com-
putes time duration from the last access to the signal.
This time is used in condition (2) and if SEU was gener-
ated during this time period the readSEU function re-
turns SEU mask (type of std logic vector with randomly
set single bit). The non-zero SEU mask value changes
the signal value (flips single bit). This causes the signals
updates can happen in all parts of the model, not only
in the update process. Therefore the VHDL model con-
sidering SEUs has to be converted to the form allowing
multiple-source signal updates.

3 VHDL MODEL CONVERSION

The VHDL converted model uses shared variables
to solve the problem of multiple-source signal updates.
Every signal has corresponding variable that is updated
instead of the signal during readout or write. After each
update of the variable the special process is activated
(seu update) that updates signals value as well. The
example of VHDL source conversion for simple case of
file of four working registers that can be written and
read is presented in fig. 2.

The VHDL model conversion can be done automat-
ically however the preprocessor is not finished yet. It
is under development using open-source VHDL parser
worked out by D.Scarpazza [13].

4 SIMULATION EXAMPLE

The simulation example concerns the control system
applied in RadMon neutron detector (fig.3). The detec-
tor uses Static Random Access Memory (SRAM) as a
neutron sensor. The SEUs in SRAM are registered and
counted by control system. The operation of the con-
trol system should be failure-free, however short breaks
in system operation are allowed. Therefore the control
system uses double modular redundancy SRAM readout
system connected by RS232 line to the PC computer
placed in radiation free environment. Both modules
of readout circuit operate in parallel and external cir-
cuit supervises their synchronous operation. When non-
synchronous operation is detected external host com-
puter restarts the readout system. The control circuit
was realized in flash-based Actel APA300 FPGA. The
results of simulation are presented in fig. 4 and fig. 5.
The fig. 4 presents the detection of SEU in the SRAM.
After detection the SEU (different values in va i vb reg-
isters) the memory contents is corrected during WRITE
cycle (memwr signal goes active). The fig. 5 presents
the distribution of the time between successive SEUs
in SRAM sensor. It corresponds well to the theoretical
distribution.
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Oryginal Converted

subtype byte is std_logic_vector(7 downto 0);

ENTITY reg_file IS

PORT (

clock : IN STD_LOGIC;

write_en : IN STD_LOGIC;

out_en : IN STD_LOGIC;

address : IN STD_LOGIC_VECTOR(4 DOWNTO 0);

data_in : IN byte;

data_out : OUT byte

);

END reg_file;

ARCHITECTURE mixed OF reg_file IS

SIGNAL r8 : byte;

SIGNAL r9 : byte;

SIGNAL r10 : byte;

SIGNAL r11 : byte;

BEGIN

data_out<=r8 WHEN address="01000" AND out_en=’1’ ELSE "ZZZZZZZZ";

data_out<=r9 WHEN address="01001" AND out_en=’1’ ELSE "ZZZZZZZZ";

data_out<=r10 WHEN address="01010" AND out_en=’1’ ELSE "ZZZZZZZZ";

data_out<=r11 WHEN address="01011" AND out_en=’1’ ELSE "ZZZZZZZZ";

write: PROCESS (clock)

BEGIN

IF clock’EVENT AND clock = ’1’ THEN

IF write_en = ’1’ THEN

case address IS

WHEN "01000" => r8 <= data_in;

WHEN "01001" => r9 <= data_in;

WHEN "01010" => r10 <= data_in;

WHEN "01011" => r11 <= data_in;

WHEN OTHERS => NULL;

END CASE;

END IF;

END IF;

END PROCESS;

END mixed;

... byte definition and entity declaration: see oryginal VHDL model

ARCHITECTURE mixed OF reg_file_seu IS

SIGNAL seus1:std_logic:=’0’; SIGNAL seus2:std_logic:=’0’;

SIGNAL r8 : byte; shared variable r8_v : byte;

SIGNAL r9 : byte; shared variable r9_v : byte;

SIGNAL r10 : byte; shared variable r10_v : byte;

SIGNAL r11 : byte; shared variable r11_v : byte;

BEGIN

read: PROCESS (address, out_en) BEGIN

IF out_en = ’1’ THEN CASE address IS

WHEN "01000" =>

r8_v:=r8 xor readSEU(r8,r8’path_name); data_out<=r8_v;

WHEN "01001" =>

r9_v:=r9 xor readSEU(r9,r9’path_name); data_out<=r9_v;

WHEN "01010" =>

r10_v:=r10 xor readSEU(r10,r10’path_name); data_out<=r10_v;

WHEN "01011" =>

r11_v:=r11 xor readSEU(r11,r11’path_name); data_out<=r11_v;

WHEN OTHERS =>

data_out <= (OTHERS => ’Z’);

END CASE;

seus1 <= not seus1;

ELSE data_out <= (OTHERS => ’Z’);

END IF; END PROCESS;

write: PROCESS (clock) BEGIN

IF clock’EVENT AND clock = ’1’ THEN IF write_en = ’1’ THEN

CASE address IS

WHEN "01000"=>r8_v :=data_in; WHEN "01001"=>r9_v :=data_in;

WHEN "01010"=>r10_v:=data_in; WHEN "01011"=>r11_v:=data_in;

WHEN OTHERS =>NULL;

END CASE;

seus2 <= not seus2;

END IF; END IF; END PROCESS;

seu_update: PROCESS (seus1, seus2) BEGIN

IF r8_v /= r8 THEN r8 <= r8_v; END IF;

IF r9_v /= r9 THEN r9 <= r9_v; END IF;

IF r10_v /= r10 THEN r10 <= r10_v; END IF;

IF r11_v /= r11 THEN r11 <= r11_v; END IF;

END PROCESS;

END mixed;

Figure 2: Example of VHDL source conversion
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Figure 3: The block diagram of RadMon system
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Figure 4: Simulation results of RadMon operation SEU in SRAM detector

Figure 5: Simulation results of RadMon operation time
between registered SEUs

5 CONCLUSION

The VHDL language and simulators can be used
for description and modeling of digital circuits that are
jeopardized to the ionizing particle radiation, however
additional functions (SEUSIM library) and source code
modifications are needed. The SEUSIM library allows
simulating the results of SEU generation and propaga-
tion through the circuit thus enabling evaluation of pro-
ficiency of applied mitigation techniques.
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