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ABSTRACT 

The electronic properties of aromatic amino acids 

physisorbed on graphene are investigated in view of 

establishing if carbon nanotube transconductance sensors 

are suitable for detecting this class of chemical stimuli. 

Several conclusions are drawn concerning both the 

sensitivity and selectivity of amino acid nanotube sensors 

based on results presented in the first part of this paper, 

while a series of methods for simplifying a self-consistent 

Hamiltonian down to a model, enabling accurate 

conductance calculations for systems of considerable size 

will be introduced in the second part. A case study is 

presented on which the aforementioned methods yield a 

minimal yet highly accurate set of parameters. 

Keywords: carbon nanotubes, aromatic amino acids, ab 
initio, order reduction, renormalization 

1 INTRODUCTION

Carbon nanotube applications are promoted daily by an 

ongoing effort within the theoretical and experimental 

community. Apart next generation transistors there is an 

increasing interest in biosensing applications motivated by 

the outstanding structural, mechanical and electrical 

properties of carbon nanotubes. 

Selective sensors capable of determining the amino acid 

composition of a protein could prove extremely useful in 

experimental and theoretical proteomics, since the 

composition profile alone is often enough to identify a 

protein [1] or even predict its secondary structure [2,3]. 

However, the requirements in terms of sensitivity and 

dynamic range rule out most of the potential sensing 

mechanisms. 

Carbon nanotube based chemical sensors have been 

experimentally demonstrated for NO2, NH3 [4], H2 [5] and 

O2 [6]. In this paper we will focus on similar 

transconductance devices, for which we aim to build a 

theoretical framework enabling the computation of 

quantum conductance modifications of two terminal carbon 

nanotube sensors in response to chemical stimuli, in the 

form of surface physisorbed amino acids. The discussions 

will be limited to zwitterion aromatic Histidine (HIS), 

Phenylalanine (PHE), Tryptophan (TRP) and Tyrosine 

(TYR) amino acids, binding through  stacking onto large 

radii carbon nanotubes. 

The remainder of this paper is structured as follows. 

Section 2 is concerned with the ab initio calculations of 

systems involving graphene sheets and aromatic amino 

acids. The third section lays the theoretical grounds for our 

Hamiltonian order reduction procedure together with a 

renormalization algorithm designed to cancel eventual 

errors caused by the former procedure. A few conclusions 

are presented in the last section. 

2 ELECTRONIC PROPERTIES 

Simulating a sensor setup at a realistic, atomic level of 

detail is a formidable task. Moreover, when assessing the 

influence of parameters like the tube’s radius and chirality, 

one cannot avoid using suitable approximations for the 

problem at hand. For example, re-computing the self-

consistent Hamiltonian for each nanotube set of parameters 

is prohibitively expensive and vastly redundant, if the 

tube’s radius is large. Curvature effects tend to vanish and 

the self-consistent Hamiltonian matrix elements of the flat 

graphene surface will provide a good approximation 

already.

Figure 1: Total density of states and band structures for 

GPH+HIS. The cyan curves correspond to bare GPH. 

A more detailed description of the ab initio calculations 

performed on these systems is contained elsewhere [7]. 

Here we focus only on those results considered relevant for 

the logic of our explanation. 
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Figure 1 displays the total density of states (TDOS) and 

band structure as obtained with SIESTA [8], in which the 

reference, pristine graphene (GPH) properties are plotted 

together with the same properties but for the GPH+HIS 

system. Typically the physisorption causes a 0.2 eV shift in 

the Fermi energy level, and introduces dispersionless bands 

close to Ef, whose positions depend on the amino acid, even 

though they were all found to be initiated by the (COO)-

group. The existence of physisorption induced states close 

to Ef is considered a necessary condition for carbon 

nanotubes to be susceptible of detecting aromatic zwitterion 

amino acids. 

Another result of Reference 7 emphasizes the strong 

localization of the charge perturbation around the (COO)-

group. The spatial confinement of the perturbation 

establishes the validity of approximating amino acids on 

nanotube Hamiltonian matrix elements by their equivalents 

in a reference, amino acid on GPH system. 

3 HAMILTONIAN MODEL REDUCTION 

AND RENORMALIZATION 

This section deals with the formal tools we have 

developed for the task of reducing a self-consistent 

Hamiltonian in view of conductance calculation speed-up, 

while at the same time controlling the influence over 

numerical accuracy. 

3.1 Elastic quantum transport formula 

In this paper we consider only elastic transport within 

mean field theories like DFT, HF of TB, in which case 

Landauer-Büttiker like formulas are typically employed for 

computing the currents through molecular structures of the 

kind sketched in Figure 2. 

Figure 2: A generic electronic molecular device. 

The following demonstrations rely on Todorov's 

derivation of the conductance, detailed in Reference 9, to 

which we refer the reader for a more thorough discussion. 

For consistency, here we repeat only a few expressions. 

0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ . .L M R LM MRH H V H H H V V h c  (1) 

The Hamiltonian of the system sketched in Figure 2 is 

decomposed in a sum of two terms; one describing the three 

distinct regions of the device ((L)eft lead, (M)olecular 

system and (R)ight lead), and the other describing the 

interactions between these regions (see Equation 1). 

Denoting the Green's function of the system by ˆ ( )rG E

1

0

ˆ ˆ( ) : limrG E E H i  (2) 

and by 0ˆ ( )E  and ˆ( )t E

0

0
ˆˆ ( ) : ( )E E H  (3) 

ˆˆ ˆ ˆˆ( ) : ( )rt E V VG E V  (4) 

Todorov's formula for the current's expectation value reads: 

0 † 02ˆ ˆ ˆˆ ˆTr ( ) ( ) ( ) ( )

( ) ( )

L R

R L

e
I dE E t E E t E

f E f E

 (5) 

where 0 0 ˆˆ ˆ( ) ( )n nE E P , ˆ
nP  being the projection operator 

ˆ
n n nP  onto the free lead states, and f(E) being 

the Fermi-Dirac distribution. The trace is over all the states 

n  of the free Hamiltonian 0Ĥ . After a few 

manipulations on Equation 5 one gets 

†

0 0

2 ˆˆ ˆ ˆTr ( ) ( ) ( )
e

I dE w H O E w H  (6) 

Here ˆ ( )O E  is just a compact notation of 

0 † 0ˆ ˆˆ ˆ( ) ( ) ( ) ( )L RE t E E t E  and 0
ˆ( )w H  a compact notation of 

1 2

0 0
ˆ ˆ( ) ( )R Lf H f H

The transformation of the Fermi-Dirac distribution into 

an operator was possible because of the following identity: 

0 0

0
ˆˆ ˆ( ) ( ) ( ) ( )n n n nE f E E f H  (7) 

Next, we have to rewrite Equation 6 in a non-orthogonal 

basis, since in most of the practical calculations the states 

n  are expanded into a linear combination of atomic 

like orbitals i . By using the closure relation for non-

orthogonal bases 
,

1
i j

i j-1

ij
S  where i j

ij
S ,

Equation 6 transforms into  

0 0

2ˆ ˆ ˆTr ( ) ( ) ( )
e

I dE H E H-1 2 -1 -1 -1 2S w S O S w S  (8) 

Computing the matrix elements of 0
ˆ( )w H  in a non-

orthogonal basis is somehow tricky. We have derived a 

numerically stable formula for computing this matrix 
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0
ˆ( ) ( )H w-1 2 -1 2 -1 2 1 2

0 0 0w H S S H S S H S  (9) 

where ( )w X  means the function of the X matrix 

supposedly written in an orthogonal basis, and thus 

computable in terms of X's eigenvector matrix V and 

eigenvalues diagonal matrix D, using the classical formula 

( )w †
V D V .

At this point we wish to make a key observation. 

Equation 8 would have been nothing more than a 

transcription of Todorov's formula if it were not for the 

special structure of the 0
ˆ( )H-1 2 -1

S w S  matrix and its 

hermitean conjugate 0
ˆ( )H-1 -1 2

S w S  which frame O(E). 

Figure 3: Column average of HIS - 0
ˆ( )H-1 -1 2

S w S  matrix. 

Figure 3 has the purpose of emphasizing the special 

structure of 0
ˆ( )H-1 2 -1

S w S  matrix. It represents the average 

of the absolute values of this matrix along its columns. As it 

can be observed, only a few of its columns are populated 

and these ones will select only corresponding lines of O(E). 

Here, selecting means that, since entire columns of 

0
ˆ( )H-1 2 -1

S w S  are almost zero, it doesn't matter what are 

the values of the corresponding lines in O(E). The same is 

true for 0
ˆ( )H-1 -1 2

S w S  but in terms of the columns of O(E).

Based on these observations we can ignore all together 

many of the lines and (corresponding) columns of O(E)

operator without affecting the current's expectation value. 

This operation is equivalent to eliminating atomic orbitals 

of the basis, and working in a subspace of the original 

Hilbert space. Naturally this sub-space projection has a 

significant influence over computation time and is one of 

the main results of our work. 

3.2 Isospectral matrix flows 

The sub-space projection method described in the 

previous section has, to no surprise, at least one problem in 

practice. The elimination of atomic orbitals from the basis 

set perturbs, depending on the system under study, the band 

structures, as can be observed for instance in Figure 4 top-

left.

A second problem, which has more to do with the 

limited size of the GPH super cell than with the orbital 

elimination procedure, made us consider renormalizing the 

Hamiltonian and overlap matrices (H, S), i.e. modifying 

their elements so as to simultaneously satisfy given spectral 

and structural constraints.

Our renormalization procedure is an adaptation of Chu's 

least squares approximation of symmetric-definite pencils 

subject to generalized spectral constraints [10] to which we 

refer the reader for a rigorous introduction to the 

mathematical concepts. In simple terms the procedure 

consists in finding a pair of matrices (H, S) that yield the 

same eigenvalues as some pair (H0, S0) and are as close as 

possible, element-wise, to some other pair (H , S ).

As the set: 

0 0 0 0( , ) : , / det( ) 0n n n nt t
H S TH T TS T TM

consists of all symmetric definite pairs having the same 

eigenvalues with (H0, S0), the problem reduces to finding a 

congruence transformation matrix T such that (H, S)

(TH0T
t, TS0T

t) optimally approximates (H , S ). Formally, 

this is equivalent to finding the minimum of the following 

expression: 

2 21
( ) :

2 F F
F

H S
T W H H W S S  (10) 

where  is the Hadamard matrix product and 
2

F
X  the 

Frobenius matrix norm. The two weighting matrices (WH,

WS) represent the only distinction between our 

renormalization procedure and Chu's theory [10]. They 

allow in a straightforward manner to increase, decrease or 

even cancel any individual matrix element of H or S.

One major feature of isospectral flows is that the 

gradient of F(T) is analytically computable; in our case 

2

2

( ) 2F
H 0

S 0

T W H H TH

W S S TS

 (11) 

which makes it possible to quickly set-up a steepest descent 

flow in order to find the minimizer of Equation 10, i.e. the 

solution to our problem. 

( ) : ( ( ))t F tT T  (12) 

We have applied this method to GPH+HIS system, 

whose properties before the renormalization process are 

found in the left column of Figure 4, where the two 

problems mentioned at the beginning of this sub-section are 

clearly visible; some bands are perturbed and the charge 

redistribution following physisorption extends throughout 

the unit cell. Due to the renormalization procedure's 

flexibility we were able to address simultaneously the two, 

apparently different, problems. 
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If r r
H = S E , correcting the spectrum of the reduced 

system is simply a matter of replacing the eigenvalues 

diagonal matrix E. Thus r

0
S = S and 0 0 0H = S E  with 

E0 the exact spectrum. 

Through this transformation the sparsity of the initial 

(Hr, S
r) is lost but fortunately by properly choosing the 

matrices (WH, WS) within the isospectral flow we were able 

to recover the sparsity, conserve the spectrum and even 

confine the physisorption charge perturbation into a smaller 

region of the unit cell as visible in Figure 4 bottom. 

4 CONCLUSIONS 

In this paper we have proposed a novel bottom-up 

approach for Hamiltonian order reduction in view of 

speeding-up quantum conductance calculations. In a first 

phase, vectors from the initial basis are eliminated if found 

not to contribute to the trace appearing in Equation 8. 

Eventual errors introduced in the first phase are corrected 

through a renormalizing isospectral flow. The result is a 

matrix pair (H, S) of unprecedented accuracy-to-rank ratio. 
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Figure 4: (Top) HIS band structure after orbital elimination (left) and after renormalization (right). (Bottom) Diagonal 

Hamiltonian elements represented in real space before (left) and after renormalization (right)
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