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ABSTRACT

The goal of this work is to develop a fast, Bayesian Prob-
abilistic Computing model [1], [2] that exploits the induced
causality of clocking to arrive at a model with the minimum
possible complexity. The probabilities directly model the
quantum-mechanical steady-state probabilities (density ma-
trix) or equivalently, the cell polarizations. The attractive fea-
ture of this model is that not only does it model the strong
dependencies among the cells, but it can be used to compute
the steady state cell polarizations, without iterations or the
need for temporal simulation of quantum mechanical equa-
tions. The impact of our proposed modeling is that it is based
on density matrix-based quantum modeling, takes into ac-
count dependency patterns induced by clocking, and is non-
iterative. It allows for quick estimation and comparison of
quantum-mechanical quantities for a QCA circuit, such as
QCA-state occupancy probabilities or polarizations at any
cell, thus enable one to quickly compare, contrast, and fine
tune clocked QCA circuit designs, before performing costly
full quantum-mechanical simulation of the temporal dynam-
ics.

Keywords: quantum-dot cellular automata, bayesian networks,
probabilistic computing, qca computing

1 Introduction

Quantum-dot Cellular Automata (QCA) is an emerging
technology that offer a revolutionary approach to computing
at nano-level [3]. It tries to exploit, rather than treat as nui-
sance properties, the inevitable nano-level issues, such as de-
vice to device interaction, to perform computing. Other ad-
vantages include the lack of interconnects, potential for im-
plementation in metal [3], and using molecules [4]. Molecu-
lar implementation has potential for room temperature oper-
ations.

The goal of this work is to develop a fast, Bayesian Prob-
abilistic Computing model [1], [2] that exploits the induced
causality of clocking to arrive at a model with the minimum
possible complexity. The probabilities directly model the
quantum-mechanical steady-state probabilities (density ma-
trix) or equivalently, the cell polarizations. The attractive fea-
ture of this model is that not only does it model the strong de-
pendencies among the cells, but it can be used to compute the

steady state cell polarizations, without iterations or the need
for temporal simulation of quantum mechanical equations.

The impact of our proposed modeling is that it is based
on density matrix-based quantum modeling, takes into ac-
count dependency patterns induced by clocking, and is non-
iterative. It allows for quick estimation and comparison of
quantum-mechanical quantities for a QCA circuit, such as
QCA-state occupancy probabilities or polarizations at any
cell, their dependence on temperature, or any parameter that
depends on them. This will enable one to quickly compare,
contrast and fine tune clocked QCA circuits designs, before
performing costly full quantum-mechanical simulation of the
temporal dynamics.

We validate our modeling with coherence vector based
temporal simulation for various QCA systems (Fig. 5). We
also show, using the clocked majority gate, how the model
can used to study dependencies with respect to temperature
and inputs (Fig. 5).

2 Prior Work

Previous work in modeling QCA circuits include the bistable
simulation engine and the nonlinear approximation [5]–[7],
however, these methods are iterative and do not produce steady
state polarization estimates. In other words, they estimate
just state assignments and not the probabilities of being in
these states. The coherence vector based method [8], [7]
does explicitly estimate the polarizations, but it is appropriate
when one needs full temporal dynamics simulation (Bloch
equation), and hence is extremely slow; for a full adder de-
sign with about 150 cells it takes about 500 seconds for 8
input vectors. Perhaps, the only approach that can estimate
polarization for QCA cells, without full quantum-mechanical
simulation is the thermodynamic model proposed in [9], but
it is based on semi-classical Ising approximation.

Following Tougaw and Lent [10] and other subsequent
works on QCA, we use the two-state approximate model of
a single QCA cell. We denote the two possible, orthogonal,
eigenstates of a cell by |1〉 and |0〉. The state at time t, which
is referred to as the wave-function and denoted by |Ψ(t)〉,
is a linear combination of these two states, i.e. |Ψ(t)〉 =
c1(t)|1〉+ c2(t)|0〉. Note that the coefficients are function
of time. The expected value of any observable, 〈 Â(t)〉, can
be expressed in terms of the wave function as
〈Â〉= 〈Ψ(t)|Â(t)|Ψ(t)〉 or equivalently as Tr[Â(t)|Ψ〉(t)〈Ψ(t)|],
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where Tr denotes the trace operation, Tr[· · ·] = 〈1| · · · |1〉+
〈0| · · · |0〉. The term |Ψ(t)〉〈Ψ(t)| is known as the density op-
erator, ρ̂(t). Expected value of any observable of a quantum
system can be computed if ρ̂(t) is known.

A 2 by 2 matrix representation of the density operator, in
which entries denoted by ρ i j(t) can be arrived at by consid-
ering the projections on the two eigenstates of the cell, i.e.
ρi j(t) = 〈i|ρ̂(t)| j〉. This can be simplified further.

ρi j(t) = 〈i|ρ̂(t)| j〉
= 〈i|Ψ(t)〉〈Ψ(t)| j〉 = (〈i|Ψ(t)〉)(〈 j|Ψ(t)〉)∗
= ci(t)c∗j(t)

(1)
The density operator is a function of time and using Loiuville
equations we can capture the temporal evaluation of ρ(t) in
Eq. 2.

ih̄ ∂
∂t ρ(t) = Hρ(t)−ρ(t)H (2)

where H is a 2 by 2 matrix representing the Hamiltonian
of the cell and using Hartree approximation. Expression of
Hamiltonian is shown in Eq. 3 [10].

H =
[ − 1

2 ∑i EkPi fi −γ
−γ 1

2 ∑i EkPi fi

]
=

[ − 1
2 EkP̄ −γ
−γ 1

2 EkP̄

]

(3)
where the sums are over the cells in the local neighborhood.
Ek is the “kink energy” or the energy cost of two neighboring
cells having opposite polarizations. f i is the geometric factor
capturing electrostatic fall off with distance between cells. Pi

is the polarization of the i-th cell. And, γ is the tunneling
energy between two cell states, which is controlled by the
clocking mechanism. The notation can be further simplified
by using P̄ to denote the weighted sum of the neighborhood
polarizations ∑i Pi fi. Using this Hamiltonian the steady state
polarization is given by

Pss =−λss
3 = ρss

11−ρss
00 =

EkP̄√
E2

k P̄2 + 4γ2
tanh(

√
E2

k P̄2/4+ γ2

kT
)

(4)
Eq. 4 can be written as

Pss =
E
Ω

tanh(∆) (5)

where E = 0.5 ∑i EkPi fi, total kink energy and Rabi frequency

Ω =
√

E2
k P̄2/4+ γ2 and ∆ = Ω

kT is the thermal ratio. We will
use the above equation to arrive at the probabilities of observ-
ing (upon making a measurement) the system in each of the
two states. Specifically, ρss

11 = 0.5(1+Pss) and ρss
00 = 0.5(1−

Pss), where we made use of the fact that ρss
00 + ρss

11 = 1.

3 Approach

We propose a Bayesian Network based modeling and in-
ference for the QCA cell polarization.

A Bayesian network[11] is a Directed Acyclic Graph (DAG)
in which the nodes of the network represent random variables

X2

X1 X4 X5

X3

Figure 1: A small Bayesian network

and a set of directed links connect pairs of nodes. The links
represent causal dependencies among the variables. Each
node has a conditional probability table (CPT) except the
root nodes. Each root node has a prior probability table.
The CPT quantifies the effect the parents have on the node.
Bayesian networks compute the joint probability distribution
over all the variables in the network, based on the conditional
probabilities and the observed evidence about a set of nodes.

Fig. 1 illustrates a small Bayesian network that is a subset
of a Bayesian Network for a majority logic. In general, x i de-
notes some value of the variable Xi and in the QCA context,
each Xi is the random variable representing an event that the
cell is at steady-state logic “1” or at steady state logic “0”.
The exact joint probability distribution over the variables in
this network is given by Eq. 6.

P(x5,x4,x3,x2,x1) = P(x5|x4,x3,x2,x1)
P(x4|x3,x2,x1)P(x3|x2,x1)
P(x2|x1)P(x1).

(6)

In this BN, the random variable, X5 is independent of X1,
given the state of its parents X4 This conditional indepen-
dence can be expressed by Eq. 7.

P(x5|x4,x3,x2,x1) = P(x5|x4) (7)

Mathematically, this is denoted as I(X5,{X4},{X1,X2,X3}).
In general, in a Bayesian network, given the parents of a node
n, n and its descendents are independent of all other nodes in
the network. Let U be the set of all random variables in a
network. Using the conditional independencies in Eq. 7, we
can arrive at the minimal factored representation shown in
Eq. 8.

P(x5,x4,x3,x2,x1) = P(x5|x4)P(x4|x3,x2,x1)
P(x3)P(x2)P(x1).

(8)

In general, if xi denotes some value of the variable Xi and
pa(xi) denotes some set of values for Xi’s parents, the min-
imal factored representation of exact joint probability distri-
bution over m random variables can be expressed as in Eq. 9.

P(X) =
m

∏
k=1

P(xk|pa(xk)) (9)

Note that, Bayesian Networks are proven to be minimal
representation that can model all the independencies in the

NSTI-Nanotech 2005, www.nsti.org, ISBN 0-9767985-2-2 	Vol. 3, 2005200



probabilistic model. Also, the graphical representation in
Fig. 1 and probabilistic model match in terms of the condi-
tional independencies. Since Bayesian Networks uses direc-
tional property it is directly related to inference under causal-
ity. In a clockless QCA circuit, cause and effect between
cells are hard to determine as the cells will affect one another
irrespective of the flow of polarization. Clocked QCA cir-
cuits however have innate ordering sense in them. Part of the
ordering is imposed by the clocking zones. Cells in the pre-
vious clock zone are the drivers or the causes of the change in
polarization of the current cell. Within each clocking zone,
ordering is determined by the direction of propagation of the
wave function [10].

Let Ne(X) denote the set of all neighboring cells that can
effect a cell, X . It consists of all cells within a pre-specified
radius. Let C(X) denote the clocking zone of cell X . We
assume that we have phased clocking zones, as has been pro-
posed for QCAs. Let T (X) denote the time it takes for the
wave function to propagate from the nodes nearest to the pre-
vious clock zone or from the inputs, if X shares the clock
with the inputs. Note that only the relative values of T (X)
are important to decide upon the causal ordering of the cells.
Thus, given a set of cells, we can exactly predict (dependent
on the effective radius of influence assumed) the parents of
every cell and all the non-parent neighbors. In this work, we
assume to use four clock zones. We denote this parent set by
Pa(X). This parent set is logically specified as follows.

Pa(X)= {Y |Y ∈Ne(X),(C(Y )<mod4 C(X))∨(T (Y )< T (X))}
(10)

The causes, and hence the parents, of X are the cells in the
previous clocking zone and the cells are nearer to the pre-
vious clocking zone than X . The children set, Ch(X), of a
node, X , will be the neighbor nodes that are not parents, i.e.
Ch(X) = Ne(X)/Pa(X).

The next important part of a Bayesian network specifica-
tion involves the conditional probabilities P(x|pa(X)), where
pa(X) represents the values taken on by the parent set, Pa(X).

We choose the children states (or polarization) so as to

maximize Ω =
√

E2
k P̄2/4+ γ2, which would minimize the

ground state energy over all possible ground states of the cell.
Thus, the chosen children states are

ch∗(X) = argmax
ch(X)

Ω = arg max
ch(X)

∑
i∈(Pa(X)∪Ch(X))

EkP̄ (11)

The steady state density matrix diagonal entries (Eq. 5 with
these children state assignments are used to decide upon the
conditional probabilities in the Bayesian network (BN).

P(X = 0|pa(X)) = ρss
00(pa(X),ch∗(X))

P(X = 1|pa(X)) = ρss
11(pa(X),ch∗(X)) (12)

Once we compute all the conditional probabilities, we
provide prior probabilities for the inputs. We can then infer
the Bayesian Networks to obtain the steady state probability
of observing all the cells including the outputs at “1” or “0”.

B

Figure 2: Clocked QCA majority gate layout

4 Experimental Results

In this section, we discuss the results of our model with a
small example of three input majority gate as the cell layout
of for QCA can be effectively drawn with synthesis using
inverter and majority gates. Fig. 4 shows the cell layout of
the majority gate. The Bayesian Network structure is shown
in Fig 3. Note that we obtain the structure based on the causal
flow of the wave function and the information regarding the
clock zone. We use ”Genie” [12] software tool for Bayesian
inference. We present the extended view of the Bayesian
Network shown in Fig. 4 with the polarization of each cell
shown for a particular input set.

In Fig 5, we report the steady state probabilities of the
correct outputs w.r.t temperature and we show that the prob-
ability of correct output vary with the input space. As we can
see that the temperature plays a key role in obtaining correct
signal behavior. More effect of temperature is less for some
inputs say {0,1,1} than {0,0,1}. Also, the input set {0,0,1}
and {0,1,0} shows different sensitivity. Hence layout plays
an important role in the error behavior of QCA. We validated
our model with respect to the QCADesigner and received the
same accuracy using the temporal simulation. However, the
time for the simulation is an order of magnitude faster.
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