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ABSTRACT 

Quantum-dot cellular automata (QCA) are proposed to 
replace conventional CMOS techniques for the construction 
of logic gates. Previous research has shown that QCA are 
likely to be sensitive to errors in placement of the 
individual dots within a QCA cell. An approach using 
random quantum-dot structures claims to partially alleviate 
the problem of dot placement in a QCA cell. Magnetic 
versions of QCA are promising candidates for realizing 
low-power computing devices. In this paper, we 
investigated the computational abilities of random magnetic 
structures and compared their behavior with random 
electronic quantum-dot structures.  
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1 INTRODUCTION

 Quantum-dot cellular automata (QCA) are proposed to 
replace conventional CMOS techniques for the construction 
of logic gates. QCA show great promise for fast 
computation with low heat generation in the realm of 
nanometer feature sizes [1]. Previous research has shown 
that QCA are likely to be sensitive to errors in placement of 
the individual dots within a QCA cell [2]. An alternative 
approach using random quantum-dot structures, which 
claims to partially alleviate the problem of dot placement 
has been discussed [3]. In random structures, quantum dots 
are placed to build a device in hopes that the computational 
ability of the device is assuredly present. Surprisingly small 
structures almost always compute basic logic functions.  

    In an offshoot of QCA, magnetic versions have been 
explored and are promising candidates for realizing low-
power computing devices [4].Magnetic QCA have the 
following advantages. They seem simpler to fabricate and 
inputs may be easier to control during simulations. Inputs 
are held at required constant value during computations.  
However, it is believed that magnetic QCA like electron 
based QCA are also sensitive to placement errors. The goal 
of our work is to simulate magnetic QCA using random 
structures and to compare and contrast their behavior with 
electronic random structures. 

2 BACKGROUND

 In random magnetic structures, each dot can exist at 
least in two polarities, North-South and South-North. Let 
North-south and South-North be designated as High and 
Low respectively. The polarity of a dot is influenced by the 
polarity of neighboring dots. 
      Consider a structure where magnetic dots are placed 
randomly. Let any two dots in the structure, say dot A   and 
dot B are selected as inputs to the structure. Inputs dots can 
be in one of the two states, say LOW and HIGH and they 
are held constant throughout the relaxation process. 
If one cycles all combinations of input and one records the 
ground states of the remaining dots, one can generate truth 
table. If one is lucky, the truth table may reveal functions of 
interest such as OR and AND. 
      To show computation with magnetic dots, consider a 
magnetic structure in which 6 dots are randomly generated. 
Suppose if the polarity of the two  dots say dot A and dot B 
are kept as input and the polarity of dot E is fixed at 0,  
which is covered by rectangular box, then dot C will 
compute the output. 

Figure 1 

The four possible combinations of inputs A and B are 
drawn below in Figure 2 
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Figure 2 

The output dot C depends on the inputs A and B. Here, 
dot C computes an OR function of A and B. The dots will 
orient in such a way that total energy of the magnetic 
system is the least 

3 MAGNETIC SYSTEM 

We model such a system with classical magnetic 
dipoles. Energy (E) of magnetic dipole in an external 
magnetic field is given by the equation [5] 

E = - µ B CosØ                                                                  (1)                

µ is the dipole moment of the magnetic dipole                 
expressed in Weber meter. 
B is the extern magnetic field magnetic field                                   
expressed in Tesla  
Ø is the angle between the dipole moment (µ) and 
the   field (B).  

The energy of interaction between two magnetic dipoles 
having magnetic moments m1 and m2 respectively and 
separated by a distance R is given by equations [5] 

E =-m1.B2                                                                         (2) 
                             or  

E= –B1.m2                                                                          (3) 

Here B1 is the field generated at the position of dipole #2 by 
dipole #1, and B2 is the field at dipole #1 generated by 
dipole  #2. 

                      
Figure 3 

The field B1 has both x and y components. The value of  
B 1x and B1y are given by the equation [5] 

B1x= [µ0/4 ] [m1/ R 3] [3sin cos ]                                    (4)                         

B1y= [µ0/4 ] [m1/ R 3] [3sin 2  -1]                                    (5)                         

Therefore, Interaction Energy (E) is given by equation [5] 

E=-B1.m2=    - [µ0/4 ] [m1m2 /R
3] [3sin 2  -1]              (6)                           

      From this expression, we say interaction energy 
between two magnetic dipoles is the minimum when the 
angle ( ) between them is ( /2) radians and the minimum 
energy is given by the equation [5] 

E min==    -2 [µ0/4 ] [m1.m2 /R3]                                      (7) 

4 SIMULATIONS 

      Simulations were performed in following three steps.    

1) Random Structure generation 
2) Exhaustive search for lowest energy 

computation 
3) Search for Boolean functions. 

4.1 Random Structure generation 

      It generates the dimensions for any number of given 
dots. The dimensions associated with each dot are magnetic 
length, magnetic moment, x-coordinate value, y-coordinate 
value, orientation, fixed and possible, where fixed and 
possible  are used in Boolean search.  rand () and srand () 
functions in the C library were used to generate random 
values.   
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4.2 Exhaustive Search 

   Exhaustive search is performed to find the ground 
state (lowest energy) of the system. In the exhaustive 
search, all possible polarities of the magnets are 
considered. For n dots, there are 2n possibilities. The 
energy of the structure for each 2n   possible combination 
is computed. It is guaranteed that exhaustive search will 
find the ground state of the system. The lowest energy 
and the corresponding polarities are saved. However, as 
the number of magnets increases, the time to search 
increases dramatically. 

4.3 Search for Boolean functions 

In the Boolean search two inputs are chosen. For each 
of the four combinations, the ground state is found and the 
corresponding polarities of the dots are recorded. If an 
output dot has a polarity opposite of that expected, then that 
dot is no longer considered a possible output.  The pseudo 
code used to search for OR logic function is given as   

function orsearch () 

    { 

    Var i, j, k, z; 

    for (i = 0; i < nMagnets; ++i) 

        { 

 for (j = i + 1; j < nMagnets; ++j) 

     { 

     setPossibleToTrue (Magnets); 

     Magnets[i]->fixed = 1; 

     Magnets[j]->fixed = 1; 

     for (k = 0; k < 4; ++k) 

         { 

  result = (k != 0); 

  setPloarityToRandom (Magnets); 

  Magnets[i]->polarity = k % 2; 

  Magnets[j]->polarity = (k / 2) % 2; 

  findLowestEnergy (Magnets); // Exhaustive search 

  for (z = 0; z < nMagnets; ++z) 

      { 

      if (z == i || z == j) continue; 

      if (Magnets[z].polarity! = result) 

           { 

   Magnets[z].Possible = False; 

   } 

      } 

  } 

     for (z = 0; z < nMagnets; ++z) 

          {  

                                  if (z == i || z == j) continue; 

  if (Magnets[z].Possible == 1) return 1; //found an 

OR

  } 

     } 

 } 

    return 0; // did not find OR 

    } 

The presence of a Boolean function depends on the polarity 
and location of the dots.  

5 RESULTS

Simulations show that relatively small magnetic 
structures compute the logical functions such as OR. The 
graph below summarizes the percentage of OR seen for the 
corresponding number of dots in the random structure. 

 Figure 4 

We confined our simulations to eleven magnetic dots, 
due to rapidly increasing search times. However, by 
extrapolating from the graph 16 or more number of dots 
will effectively always compute an OR function. 

6 DISCUSSION 

In contrast to prior results [3], although larger magnetic 
structures seem to require as compared to random quantum 
dot structures, the apparent advantages of magnetic 
structures warrants further investigation. 
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