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ABSTRACT

We introduce the coupling of three-dimensional tran-
sient electro-thermal interconnect simulations with in-
trinsic thermo-mechanical stress solutions. In order to
study the development of local thermal stresses we use
a finite element simulator for the investigation of com-
plex layered interconnect structures at different operat-
ing conditions. The obtained local stress, temperature
distribution, the current density, and the potential dis-
tribution represent the complete input data for accurate
electromigration analysis.
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1 INTRODUCTION

The steady enhancements of state-of-the-art integra-
ted circuit designs have shown that interconnect struc-
tures are becoming a dominant factor for determining
the system performance. Interconnect reliability is re-
duced due to the evolution of thermal induced mechan-
ical stress in addition to the intrinsic stress of the mate-
rial. Thus, the vacancy distribution increases and there-
fore, electromigration has become a serious design issue
especially for long interconnect lines.

Experimental results indicate that Joule heating has
a strong impact on the magnitude of the maximum al-
lowed temperature of the global lines, despite negligible
changes in the chip power density [1]. High tempera-
ture gradients in interconnect structures are known as
a significant electromigration promoting factor [2]. Ad-
ditionally, the thermal volume expansion mismatch be-
tween the metal and the passivation layers causes me-
chanical stress which is an important reason for raising
electromigration failures [3], [4].

The confinement of the metal lines by its barrier and
passivation layers is essential in controlling the char-
acteristics of the thermal stresses and their relaxation
behavior. With decreasing line dimensions the confine-
ment effect is enhanced and the stress level increases
significantly which causes a higher vacancy distribution
and increases the probability of void formations [5], [6].

2 ELECTRO-THERMAL MODEL

The three-dimensional electro-thermal problem with
self-heating for three dimensions is described by the heat
conduction equation, the power loss equation, and the
Laplace equation [7], [8]

. oTr
div (yrgradT) = CpPm g~ Py (1)
p=el grade||?, (2)
div (vg grad ¢) = 0. (3)

~vr denotes the material specific thermal conductiv-
ity, v the electrical conductivity, p the electrical power
loss density, ¢, the specific heat, and py, the mass den-
sity.

For the conductivities of the different materials a sec-
ond order polygonal model is used [8]:

_ "o
V(T) = 14+ a(T —To) + B(T — Tp)?’ (4)

The structure of this formula is used for both the elec-
trical conductivity yg(7) and the thermal conductivity
~v1(T) correspondingly, where v is the conductivity at
the reference temperature 7y = 300K, a denotes the
first order temperature coefficient, and /3 the second or-
der coeflicient.

The temperature-dependence of the heat capacitance
¢p(7) is modeled with the Shomate equation [9]:

D)
ep(T) =A+BT+CT2+DTS+ﬁ (5)

where 7 = T'/1000K represents the normalized temper-
ature.

As a solution from the transient electro-thermal sim-
ulation we obtain the temperature distribution in the
interconnect lines, in the barrier layers, and in the pas-
sivation layers. This resulting temperature distribution
is used to set up the thermo-mechanical problem.
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Figure 1: Typical interconnect structure consisting of
several layers.

3 THERMO-MECHANICAL MODEL

The temperature-dependent mechanical model de-
scribes the local volume expansion due to the increase of
the local temperature. Since the different local element
expansions result in a local stress distribution due to the
confinement by the barrier and passivation layers.

The equations for the stress development due to the
thermal expansion are

Oij (T) = Ba(T — T())(Sij + )\Ek}g(sij + 2/1,61']'7 (6)

1 /0u;  Ouy
EZ] o 2<6Ij + 8$1)7 (7)
gradé = 0. (8)

where B denotes the bulk modulus, a the thermal vol-
ume expansion coefficient, 4 and A the Lame constants,
€;; the components of the strain tensor &, @ the local
displacement vector, & the position, and & the stress
tensor.

The equation system consisting of the equations (1)-
(3) for the electro-thermal model together with the equa-
tions (6)-(8) for the thermo-mechanical model describes
the time-dependent evolution of the temperature and
the corresponding hydrostatic stress distribution in the
interconnect structures [10].

For the multi-layered interconnect structure shown
in Figure 1 the electro-thermal equation system (1)-(3)
is solved numerically and we obtain the temperature

Figure 2: Temperature distribution [K] in the barrier
and passivation layers.

distribution in the SiOs and SizNy layers, which is de-
picted in Figure 2. Based on that result and the thermo-
mechanical equations from (6)-(8) we can determine the
stress distribution as shown in Figure 3.

4 SIMULATION RESULTS

The electro-thermal simulation has been performed
with the three-dimensional interconnect simulator STAP
from SAp [11], [12] (Smart Analysis Programs) in the
transient electro-thermal mode. The simulation step
afterwards for the local stress analysis has been per-
formed with the stress calculation module of the three-
dimensional FEDOS (Finite Element Diffusion and Ox-
idation Simulator). We investigated the interconnect
structure shown in Figure 1 in which the copper inter-
connect lines are embedded in SiOs and SizN,4 passiva-
tion layers. The lower and the upper interconnect lines
are connected with vias. These vias consists also of cop-
per and the corresponding barrier and passivation lay-
ers. On the bottom is a silicon substrate at a constant
temperature of 350 K, which is used as a heat sink [13].
Between the lower layer and the upper layer interconnect
lines we have a voltage applied which is switched on at
the beginning of the simulation time (¢ = 0). We obtain
the temperature distribution of the complete structure
by a transient simulation which is mainly determined
by self-heating of the interconnect lines. Therefore, the
temperature change in the copper lines is negligible and
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Figure 3: Pressure distribution [Pa] in the copper interconnect lines, the barrier layers, and the vias.

the set of the heated lines can be assumed to be a dis-
tributed single heat source due to the high thermal con-
ductivity of the copper interconnect lines in comparison
to the surrounding materials. The temperature gradi-
ent in the barrier layer between the copper regions in the
via is almost negligible. However, for further investiga-
tions, especially for the stress analysis, it is necessary to
provide this information.

The structure has been separated into two parts for
an accurate visual investigation. The material com-
pound is split into two major parts: the interconnect
part with the stress distribution as shown in Figure 3
and a part with the dielectric materials with the tem-
perature distribution as shown in Figure 2. Thus, those
parts which show a critical stress level can be easily in-
dentified and extracted for more accurate investigations
and optimization purposes.

The main design issue for the part with the intercon-
nect line is the thermal stress distribution due the inter-
nal temperature gradient and the corresponding volume
mismatch between the lines and their passivation and
barrier layers. For the dielectric materials the main is-
sue is the local temperature indicating the most heated
regions which can cause dielectric breakdown.

For investigation on the critical parts like vias and
edges as shown in Figure 4 there can be seen a typical
current path, where the stress shows a maximum.

In Figure 4 the current flows from the lighted right
upper region to the bottom perpendicular from the draw-
ing layer in direction to the viewer.

Between these two regions there are areas of rela-
tively low stress, which correlate directly with the local
current density distribution in the via.

Together with the potential distribution and the cor-
responding current density distribution we have the com-
plete input parameter set for electromigration analysis
available.

5 CONCLUSION

We coupled fully three-dimensional transient electro-
thermal simulations with fully three-dimensional thermo-
mechanical stress simulations, which allows us to pro-
vide appropriate input data for electromigration analy-
sis in three dimensions. The results in Figure 3 and 4
show that the peak value of the pressure is generated at
the bottom of the copper interconnect vias, which high-
lights these areas as the ones with the highest risk of
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Figure 4: Pressure distribution [Pa] in the most stressed
via.

electromigration. In addition, these results give infor-
mation about the locally stressed regions in the dielec-
tric materials, which can be used for further reliability
investigations on the life time of these materials.

The results of this work show the significance of ac-
curate simulation in the coupled electro-thermal regime
as well as in the thermo-mechanical regime which is nec-
essary to get reasonable results for the time-dependent
evolution of the local stress.

Both type of regions, the vias and the edges of the
interconnect are highly stressed due to the intrinsic tem-
perature increase during operation, because the barrier
and the passivation have a smaller volume expansion
coefficient than copper and these materials can not be
instantaneously brought to a certain temperature.

With these results we are able to obtain the necessary
input data not only for the intrinsic stress but also for
the exogenously induced stress which causes a higher
vacancy distribution and therefore a higher probability
for void formation.
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