A Simulation Tool For System Services In Ad-Hoc Wireless Sensor
Networks

S.N.I. Mount, R.M. Newman and E.I. Gaura

Cogent Computing, Coventry University, UK
{s.mount, r.m.newman, e.gaura}@coventry.ac.uk

ABSTRACT

Whilst the physical design and instrumentation of
ad-hoc wireless sensor networks (WSNs) has recently
received a lot of attention, it is often assumed that the
system software for such devices will simply copy the de-
sign of software for larger, fixed, context-ignorant com-
puters. We believe that this lack of experimentation is
not conducive to developing optimal architectures and
services for WSNs.

In this paper we present SenSor: a simulation tool
which facilitates experimentation with novel software ar-
chitectures, by enabling a top-down approach to soft-
ware design. This is in contrast with other simulation
tools which offer a way to validate code for a particular
hardware platform. We describe the top-down design
method which SenSor facilitates with examples.

Keywords: wireless sensor networks, top-down de-
sign, software engineering

1 INTRODUCTION

Whilst the physical design and instrumentation of
ad-hoc wireless sensor networks (WSNs) has recently
received a lot of attention, it is often assumed that the
system software for such devices will simply copy the de-
sign of software for larger, fixed, context-ignorant com-
puters. Perhaps this is partly because we have yet to see
a widespread proliferation of tools with which engineers
can simulate the effects of deploying system software
on ad-hoc, wireless networks. In this paper, we address
this situation by taking an analogy from computer aided
design.

Electronic computer aided design typically follows a
linear progression from concept to architectural design
through logical and physical design to layout and fabri-
cation. We believe that the design of systems software
for ad-hoc WSNs shares some of the constraints of hard-
ware design. For example the finished product is a black
box, the complexity of the system scales exponentially
with new components and (unlike with other software)
mistakes can be expensive to correct.

To ameliorate the difficulty of designing software for
WSNs, we have built SenSor, a simulator with which
software engineers can build algorithmic simulations of

systems components. SenSor is sufficiently flexible that
one, many or all systems software components and appli-
cations can be prototyped in the same simulation - and
these can be run in any order. This allows an important
separation of concerns during the development process.
For example, an engineer might build a fault detection
mechanism by first of all assuming a fully-connected net-
work with a fixed topology. Later in the development
of the fault detection algorithms, these constraints will
need to be relaxed and the engineer can experiment with
running the software on different types of network with
different topology management strategies.

We believe that SenSor is distinct from other net-
work simulators, which are hardware-specific, typically
assume a layered network protocol model and often in-
clude an industry standard protocol stack. Issues in
WSNs are then explored within these constraints. In-
stead, SenSor assumes nothing about the structure in
which system services may be built, which leaves the
user free to explore new models of system structure,
away from the traditional OSI partition set.

1.1 Nomenclature

The word “sensor” is used in this paper with a vari-
ety of different spellings, each of which have a distinct
meaning. Below is a brief glossary:

sensor A computational element with access to sense
data from it’s environment.

probe That part of a sensor which generates sense data
from the environment.

SenSor The SenSor simulation tool.

Sensor A Python class, within the SenSor tool, which
represents a sensor.

1.2 This Paper

The remainder of this paper is organised as follows:
Section 2 describes the SenSor workbench in detail. Sec-
tion 3 gives an overview of the top-down design method
that SenSor facilitates. Section 4 gives a small exam-
ple of a simulation. Section 5 describes related work on
simulations for wireless sensor networks and Section 6
concludes.

NSTI-Nanotech 2005, www.nsti.org, ISBN 0-9767985-2-2 Vol. 3, 2005 423



Figure 1: The SenSor Workbench
2 THE WORKBENCH

The SenSor workbench is composed of two parts. A
graphical interface (Figure 1 is used to edit and animate
simulations. The interface provides an API to it’s graph
and chart panels. This enables simulations to directly
manipulate their visual representation. Sensor nodes are
represented by circles and arcs between the circles are
used to represent communications or topological struc-
tures, etc. Each node can register a change of state by
changing the colour of its representative circle. For sim-
ulations with large numbers of nodes, colour is perhaps
the easiest way for a user to track sensor behaviour.

Behind the user interface lies a set of Python classes
which are subclassed to create each simulation. These
superclasses are designed to represent the operating sys-
tem (OS) of a sensor and are able to schedule and run
prioritised tasks and provide communication between
motes. These two tasks are the core of any OS for WSNs
and are a subset of the capabilities of a production OS
for a desktop environment. Since it is intended that
users can experiment with new OS architectures, this
minimalist approach means that other OS facilities can
be specifically designed for individual simulations.

2.1 SenSor Architecture

To understand how SenSor is intended to be used it
is important to appreciate the role of each of the base
classes. Below we describe the contents of each class,
what it is intended to represent and any important de-
tails about extending it.

Sensor objects represent the OS of a sensor and may
be thought of as a blank piece of memory. Each
sensor runs in it’s own thread and subclasses need
to lock and unlock data structures which they de-
fine. Each Sensor object has a Scheduler running

a Task list, where each Task also has a reference
to it’s Sensor (so it can read/write to that Sensor’s
memory and call send() and recv() in order to
communicate).

The recv() method which accepts a Packet ob-
ject and places it on a thread-safe queue called
recv_q. A send() method is provided which re-
moves a Packet object from a thread-safe queue
called send_q and “sends” that message either di-
rectly to another Sensor or via the send () method
in the Ether class. send() and recv() may be
overridden.

Scheduler objects represent the OS scheduler of each
Sensor object. Each Scheduler has a Task list
which it cycles through n times (where n is an in-
teger argument to the constructor of Scheduler),
executing a user-defined methods in each Task ob-
ject.

Task objects define a particular job that a sensor may

be scheduled to perform. Useful tasks may in-
clude obtaining probe data from a file or socket,
interacting with the message queues in the Sensor
class, managing internal data structures, etc. It
is intended that Tasks may only interact with one
another via shared data structures within Sensor
classes.
The scheduler module provides extra classes to
represent the priority of a task within the task
queue (as with Unix systems, the lower the inte-
ger value, the higher the priority) and how often a
task should be run. This means that a Task may
be scheduled to run only once, or every n times
the scheduler reaches it in the Task queue.

Packet objects define the format for packets of data
being passed between Sensors. This format may
be very high level (if the simulation is not imme-
diately concerned with communication issues) or
much closer to a real implementation.

Ether objects control the routing of messages between
Sensor objects. They may be used to facilitate
broadcasting, or to route each individual message
in a simulation.

Simulation objects are the entry point for each sim-
ulation. They should contain an instantiation of
the Ether and Sensor classes.

3 A TOP-DOWN DESIGN CYCLE

Perhaps the most important claim that we make for
SenSor is that it enables the user to separate the various
concerns of each simulation. Separation of concerns is
inherently a subjective matter, and the examples given

424 NSTI-Nanotech 2005, www.nsti.org, ISBN 0-9767985-2-2 Vol. 3, 2005



here and (more fully) in Section 4 are intended to sup-
port our claim.

An example mentioned earlier involves building a
fault detection mechanism by first of all assuming a
fully-connected network with a fixed topology. Later in
the design cycle these constraints will need to be relaxed
and the user can experiment with running the software
on different types of network and with different topology
management strategies.

A simulation of a communication protocol, on the
other hand, might be written as if each mote had no sen-
sors attached and generate random numbers in place of
real data. In this case, subclasses of Packet may need to
be a realistic model of real packets used in a production
network and would probably hold only a single binary
value. In the previous example of a fault management
system, packet design was irrelevant and Packet objects
might have a high-level representation, perhaps contain-
ing string data and other high level structures.

The design cycle of a simulation strongly depends
on the purpose of the algorithms being simulated. Even
so, we have a coarse design strategy which we advocate.
Here, algorithms are first designed formally, in an appro-
priate specification language (such as the m-calculus [4]).
A formal analysis of the algorithms (perhaps its stability
or complexity) can be undertaken. Next the algorithm is
animated in SenSor, in a simulation which only realisti-
cally models the algorithm itself and it’s necessary data
structures. In a sequence of simulations various aspect
of the algorithm might be tested. For example, in a fault
detection simulation, random data can be introduced
to each probe at random times. Next the simulation
can be gradually refined until all relevant data struc-
tures are represented. In the fault detection example,
the user might begin with an Ether object which explic-
itly routes all packets through the network. Later re-
finements might include a topology discovery and man-
agement module, wherein nodes would perform network
routing themselves and the Ether object might be ab-
sent or only responsible for broadcasting Packets. When
realistic simulations have been experimented with, pro-
duction code might be written for a particular hardware
platform. However, it may still be useful to add in an-
other level of refinement before deployment, where a
hardware-specific simulator is used to gather quantita-
tive data about the scalability or robustness of a partic-
ular application. There are few simulators which offer a
sufficiently high fidelity model of network behaviour to
gather realistic results, although TOSSIM is one [2].

4 EXAMPLE SIMULATION

A full refinement from specification to is too large to
describe in this paper. Instead we present a high-level
simulation of a fault management protocol, described
in [1] which has already been specified in the m-calculus

class ProbeReaderFromFile(ProbeReader) :
def read_probe(self):
1n = self.probe.readline()
if 1n == "": # EOF
sys.exit ()
val = float(string.strip(ln))
self.sensor.probe_q.put(val)
return

Figure 2: Probe reader class.

class FaultDetector(Task):
def is_faulty(self, d1, d2, d3):
if (... )
return 1
return O
def fault_detect(self):
if self.is_faulty(probe_q.get(),
probe_q.get(),
probe_q.get()):
self.sensor.is_faulty = 1
else:
self.sensor.is_faulty = 0
return

Figure 3: Fault detection class.

[4]. Here, each node in the network is assumed to have a
nearest neighbour, whose presence has been determined
by a topology management system which is outside the
concern of this simulation. Each node obtains a reading
from one of it’s probes and places it in a queue called
probe_q. Code for this task is in Figure 2. Note that the
ProbeReaderFromFile class inherits from ProbeReader.
Other subclasses of ProbeReader might obtain data from
a socket, via a web connection, etc. Although we have
omitted some details (such as constructors), the class is
very short and deals only with the specific task at hand.

Fault detection is carried out by another subclass
of Task, shown in Figure 3. Here, a separate method
is used to determine, based on three readings' from
the nearest neighbour and the sensors own readings,
whether the probe is faulty. This information is used
to set a flag in the Sensor object, which determines
whether probe data is sent on to other probes, or whether
data from the nearest neighbour is sent instead. Note
that we have missed out a few details, for example, we
haven’t dealt with situations where probe_q holds less
than three items, and we haven’t saved the most recent
value in the queue in case it needs to be sent out. Figure
3 gives an outline of the task.

Most importantly the is_faulty method is kept sep-
arate from the main fault detection algorithm. This is

1Three readings are used as the system described in [1] requires
three readings for a neural net to detect faults.

NSTI-Nanotech 2005, www.nsti.org, ISBN 0-9767985-2-2 Vol. 3, 2005 425



class Reader:
def __init__(self, data, time):
self.data = data
self.time = time
class ProbeReaderWithTS(ProbeReader) :
def read_probe(self):
1n = self.probe.readline()
if 1n == "": # EOF
sys.exit ()
val = float(string.strip(1ln))
obj = Reading(self.val,
self.sensor.clock)
self.sensor.probe_q.put(obj)
return

Figure 4: Probe reader class with timestamps.

deliberate, as this method will be iteratively refined by
subclassing FaultDetector. In initial simulations of the
algorithm a naive method can be written (say, averaging
the values from the neighbour and examining a thresh-
old difference). Later the method can be refined to the
one described in [1], where a neural network is used to
detect faults.

Once we have a working simulation, we may wish
to test the robustness of the algorithm against certain
problems such as clock drift. In this initial simulation
clock drift is irrelevant, as we are holding data in queues
and we only have three tasks in the scheduler (the probe
reader, the fault detector and a task to send data to the
nearest neighbour). However, as the simulation is re-
fined, more tasks will be added and the probe_q queue
may be quite large by the time the fault detector ex-
amines it and it may need to be flushed. On the other
hand, we may decide to only keep the latest three values
from the nearest neighbour. In either case we may want
to know whether or not it is useful to ensure that the
probes current reading was taken at a time very close
to the readings from the nearest neighbour and whether
clock drift might affect this.

In this case, we need to alter the
ProbeReaderFromFile class to time-stamp each reading
and subclass the Sensor class, adding in a method for
clock drift. In this high-level simulation, we can repre-
sent timestamped data in an object such as Reader in
Figure 4 where time could be either a built in Python
type or a real. A new subclass of Sensor need only
override the clock method.

5 RELATED WORK

TOSSIM [2] and other lower-level simulation tools
(e.g. [8]) all address a slightly different problem: how to
gather quantitative data about an algorithm or protocol.
These tools can be used to discover bugs in algorithms
and implementations as well as investigating the scala-

bility of network interactions. However, they are usually
hardware-dependent and intended to be used late in the
design cycle.

Work on animating algorithms [6],[5] is close to ours,
but is mainly used in education. These tools are used
to illustrate algorithms from the literature, not to allow
students to experiment with new algorithms.

Other sorts of workbench (e.g. the Concurrency Work-
bench [3] and the Mobility Workbench [7]) allow for the
step-though of theoretical representations of systems.
These systems are useful in verifying high-level speci-
fications but cannot be used in refinement.

6 CONCLUSIONS

We have described SenSor, a simulation tool for wire-
less sensor networks which facilitates the top-down, it-
erative design of systems software for WSNs. We claim
that simulations in SenSor can be rapidly prototyped
and animated and that the design of SenSor allows a
useful separation of concerns within the design cycle.

REFERENCES

[1] E. Gaura and R. M. Newman. Microsensors, ar-
rays and automatic diagnosis of sensor faults. In
IEEE International Conference on Advanced Intelli-
gent Mechatronic (AIM2003), pages 360-366, Kobe,
Japan, 2003.

[2] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM:
accurate and scalable simulation of entire tinyos ap-
plications. In SenSys ’03: Proceedings of the 1st in-
ternational conference on Embedded networked sen-
sor systems, pages 126-137. ACM Press, 2003.

[3] F. Moller and P. Stevens. Edinburgh Concurrency
Workbench user manual (version 7.1). Available
from http://homepages.inf.ed.ac.uk/perdita/cwhb/.

[4] R. M. Newman and E. Gaura. Using very large
arrays of intelligent sensors. In IEEE Interna-
tional Conference on Advanced Intelligent Mecha-
tronic (AIM2003), pages 356-359, Kobe, Japan,
2003.

[5] J. Stasko. Animating algorithms with XTANGO.
SIGACT News, 23(2):67-71, 1992.

[6] E. Sutinen, J. Tarhio, and T. Terasvirta. Easy al-
gorithm animation on the web. Multimedia Tools
Appl., 19(2):179-194, 2003.

[7] B. Victor and F. Moller. The Mobility Workbench
— a tool for the m-calculus. In D. Dill, editor,
CAV’94: Computer Aided Verification, volume 818
of Lecture Notes in Computer Science, pages 428—
440. Springer-Verlag, 1994.

[8] S. Y. Wang, C. L. Chou, C. H. Huang, C. C. Hwang,
Z. M. Yang, C. C. Chiou, and C. C. Lin. The de-
sign and implementation of the NCTUns 1.0 network
simulator. Computer Networks, 42(2):175-197, 2003.

426 NSTI-Nanotech 2005, www.nsti.org, ISBN 0-9767985-2-2 Vol. 3, 2005



