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ABSTRACT

We compare a computational model to experimental
data for DNA-laden flow in microchannels. The purpose
of this work in progress is to validate a new numeri-
cal algorithm for viscoelastic flow using the Oldroyd-B
model. Our numerical approach is a stable and conver-
gent polymeric stress-splitting scheme for viscoelasticity.
We treat the hyperbolic part of the equations of motion
with an embedded boundary method for solving hyper-
bolic conservation laws in irregular domains. We enforce
incompressibility and evolve velocity and pressure with
a projection method. Our experiments are performed
using fluorescence microscopy and digital particle im-
age velocimetry to measure velocity fields and track the
conformation of biological macromolecules. We present
results comparing velocity fields and the observations
of computed fluid stress on molecular conformation in
various microchannels.

Keywords: viscoelasticity, Oldroyd-B, hyperbolic con-
servation laws, embedded boundaries, digital particle
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1 INTRODUCTION

We consider flow of an incompressible viscoelastic
fluid at the microscale. Viscoelasticity is an appropriate
model for particle-laden biological fluids consisting of
macromolecules including DNA. We begin by summariz-
ing our equations of motion, algorithm and experimental
techniques followed by a comparison of computational
and experimental data. Included are data for several
contraction geometries found in bioMEMS devices, with
a direct comparison of velocity profiles and possible ef-
fects of computed fluid stress on observed molecular de-
formation in [6].

2 EQUATIONS OF MOTION

The equations of motion are the incompressible
Navier-Stokes equations coupled to the Oldroyd-B poly-
meric stress equation:

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p + µs∆u + ∇ · τ , (1)

∇ · u = 0, (2)

∂τ

∂t
+ (u · ∇)τ −∇u · τ − τ · (∇u)T

=
1
λ

[
µp(∇u + (∇u)T ) − τ

]
. (3)

Here, ρ is the fluid density, u is the velocity, p is the
isotropic pressure, τ is the fluid stress and µs and µp are
the solvent and polymeric contributions to the total vis-
cosity. The relaxation time, λ, characterizes the stress
decay rate in a fluid sample held at constant strain.

3 ALGORITHM

We approach the problem numerically with a poly-
meric stress splitting scheme which is stable and conver-
gent for the full range of viscoelastic flows [1]. Here the
equations of motion have been made suitable for the ap-
proach in [2] for solving hyperbolic conservations laws
on irregular domains. In order to enforce the incom-
pressibility restraint, we use the higher-order projection
method described in [3].

We begin by intersecting our domain with a cell-
centered Cartesian grid. In order to obtain a high order
approximation for our fluxes, we first cast the equations
in quasi-linear form:

∂W

∂t
+

D−1∑
i=0

Ai(W )
∂W

∂xi
= SW , (4)

where W is the vector of primitive variables, D is the
dimensionality of the problem, Ai are matrices and SW

is the primitive source term vector. We then employ
Taylor series and characteristic tracing to obtain face-
centered, time-centered values for the primitive vari-
ables. To update the cells, we use the conservation form:

∂U

∂t
+ ∇ · F (U) = SU , (5)

where U is the vector of conserved variables, F is the
vector of fluxes and SU is the conservative source term
vector. We project the velocity field in order to enforce
the incompressibility constraint.
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Figure 1: Embedded boundary representation of con-
traction/expansion device. Fluid enters/exits device
through tubes attached to triangular reservoirs at in-
dicated locations.

To handle irregular geometries, we use the embedded
boundary method, which is a volume of fluid method
that takes a “cookie cutter” approach to irregular do-
main boundaries on Cartesian grids. Cut cells exist near
boundaries and are treated with advanced discretization
stencils [2], [4].

4 EXPERIMENTS

To obtain velocity fields in components of bioMEMS
devices, we use the digital particle image velocimetry
(DPIV) technique described in [5]. DPIV combines flu-
orescence microscopy, where fluorescent seed particles
are imaged at successive timesteps, with image interro-
gation algorithms to calculate the velocity fields. Our
experimental technique for measuring the orientation
and deformation of λ-DNA molecules along with results
are presented in [6]. The experiments used intercalat-
ing fluorescence microscopy, where λ-DNA molecules
were marked with a fluorescent dye in order to im-
age them. Statistical data was obtained by tracking
molecules that pass through particular regions in the
microchannel rather than tracking individual particles.

We measure the viscosities µp and µs, and use the
Rouse model to obtain the relaxation time:

λ =
[µ]µsM

RT
, (6)

where M is the molecular weight of λ-DNA, R is the gas
constant and T is temperature. The intrinsic viscosity,
[µ], is calculated using:

µp + µs ≈ µs(1 + [µ]c), (7)

where c is the concentration of λ-DNA in solution.
Device fabrication, imaging instrumentation and fluid
characterization are described in detail in [6].

Figure 2: Computed results for x-velocity field (left);
0 µm/s (red) to 175µm/s (blue) and y-velocity field
(right); -33µm/s (red) to 33µm/s (blue) for the rounded
contraction device.

5 RESULTS

We use the convention that the direction of positive
flow is the +x direction while the width and depth are
the y and z direction, respectively. All velocity fields
are measured at the median depth of the channel.

5.1 Rounded Contraction Velocity

Profiles

Our first geometry is the rounded contraction geom-
etry used in [6]. Two triangular reservoirs are connected
by a narrow rectangular channel with length L = 8mm.
The depth of the entire device is d = 60µm and the
width of the narrow channel is w = 330µm. See Figure
1 for an embedded boundary representation of this ge-
ometry. We compute velocity fields in the region before
and after the contraction. The experimentally obtained
parameters are: ρ = 1g/mL, µs = 25.0cP, µp = 0.975cP
and λ = 0.416s.

The computed x and y velocity fields are shown in
Figure 2. We compare x-velocity profiles for compu-
tational and experimental data at the contraction cross
section for our 2D and 3D models in Figures 3 and 4. We
note that our experiment yields a “top-hat” x-velocity
profile at the contraction, yet we only predict this phe-
nomena with our 3D model. We believe the large chan-
nel width-to-depth ratio is the cause of this phenomena,
and therefore a 2D model cannot capture this 3D effect.

5.2 Rounded Contraction Stress

Profiles

We now wish to examine the effect of fluid stress on
the stretching of λ-DNA molecules. We present normal
stress (τxx) and shear stress (τyx) profiles in Figure 5.
Note that due to conservation of angular momentum,
the stress tensor is symmetric, and therefore τxy = τyx.
We will compare our stress profiles with experimental
data on λ-DNA molecule conformation.
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Figure 3: Experimental (red with squared) vs. computa-
tional (blue with triangles) x-velocity profile comparison
at contraction using 2D model with Q = 10µL/hr.

Figure 4: Experimental (red with squared) vs. computa-
tional (blue with triangles) x-velocity profile comparison
at contraction using 3D model with Q = 20µL/hr.

The effect of normal stress stretching is represented
by τxx. In this geometry, we predict normal stress down
the centerline as the fluid accelerates inside the contrac-
tion and near the walls in the contracted channel. There
is no normal stress component down the centerline in
the contracted channel. The images in [6] support this
centerline normal stress profile, as the particles stretch
from their original position to the increased lengths at
the contraction, and then relax back to their original
configuration as they pass downstream.

It has been observed in [6] that, within the contrac-
tion, the particles near walls appear more stretched out
than the particles near the centerline. Our computations
indicate that the magnitude of both shear and normal
stress is higher near wall locations than near the cen-
terline. Further investigation is required to determine
the relative influence of each type of stress near the wall
locations on molecular stretching.

Figure 5: Computed results for normal stress field (left);
-10mg/(cm-s2) (red) to 61mg/(cm-s2) (blue) and shear
stress field (right); -48mg/(cm-s2) (red) to 48mg/(cm-
s2) (blue) for the rounded contraction device.

Figure 6: Computed results for x-velocity field (above);
0µm/s (red) to 275µm/s (blue) and y-velocity field (be-
low); -45µm/s (red) to 45µm/s (blue) for the abrupt
contraction device.

5.3 Abrupt Contraction Velocity

Profiles

Our second geometry is an abrupt contraction ge-
ometry. The depth of the device is d = 100µm, the
pre-contraction width is W = 100µm and the post-
contraction width is w = 60µm. The experimentally
obtained parameters are: Q = 10µL/hr, ρ = 1g/mL, µs

= 25.0cP, µp = 0.975cP and λ = 0.416s.
The computed x and y velocity fields are shown in

Figure 6. We compare x-velocity profiles for computa-
tional and experimental data at cross sections located
at 150µm before and 150µm after the contraction. Our
model compares well with the experimental results.
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Figure 7: Experimental (red with squares) vs. com-
putational (blue with triangles) x-velocity comparison
at 150µm prior to contraction (above) and 150µm post
contraction (below).

6 CONCLUSION

We provide comparison between computation and
experiment for non-Newtonian, viscoelastic flow in ir-
regular microdevice geometries. The velocity fields com-
pare well, but a 3D model is required to capture certain
experimentally observed effects, especially where large
width to depth ratios exist. The stress fields are con-
sistent with experimental observations for macromolec-
ular conformation. This work provides the foundation
for computing velocity and stress fields in more compli-
cated microdevice components as well as biological sys-
tems. Future work involves the inclusion of a particle
representation to our continuum model, as well as an
extension to adaptive mesh refinement (AMR), where
we locally increase the spatial resolution in regions of
high gradients.
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