
Stress optimization of a micromechanical torsional spring

T. Klose*, D. Kunze*, T. Sandner*, H. Schenk*, H. Lakner*, A. Schneider**, P. Schneider**

* Fraunhofer Institute for Photonic Microsystems1

Dresden, Germany, thomas.klose@ipms.fraunhofer.de
** Fraunhofer Institute for Integrated Circuits, Design Automation Devision EAS2

Dresden, Germany, andre.schneider@eas.iis.fraunhofer.de

ABSTRACT

In this paper we present a method for the design of a
stress-optimized and reliable micromechanical torsional
spring. Our optimization approach is based on a soft-
ware tool for simulation-based optimization – MOSCITO
[1], [2], in combination with the FEM tool ANSYS r©.
For a specific spring geometry we successfully increase
the maximal possible deflection by 30 percent, keeping
a given limit for the stress.

Keywords: MEMS, ANSYS r©, MOSCITO , optimiza-
tion, torsional spring

1 INTRODUCTION

Microsystems in SOI technology take advantage of
the excellent mechanical properties of monocrystalline
silicon which are superior to those of steel [3]. As a
brittle material silicon does not exhibit plastic defor-
mation at room temperature. Monocrystalline silicon is
also free of fatigue unless local stress peaks lead to crack
initiation. In this way it is ideal for the fabrication of
springs.

Micromechanical torsional springs are important and
frequently applied components of MEMS design. They
are easy to dimension and show nearly linear behav-
ior concerning the torsional spring constant. Simultane-
ously they are often the most stressed components and
therefore crucial for reliability. For this reason it is im-
portant to investigate and understand the mechanisms
of stress and failure within the springs. So it becomes
possible to find a spring geometry with optimized dis-
tribution of mechanical stress, increased reliability and
applicability.

Unfortunately universally valid values for material
properties like Woehler curves are not available. This is
due to the complex and usually unknown properties of
the specific technology used to microstructure the silicon
[5]. Another point is the orthotropy of monocrystalline
silicon in terms of its material properties. It must not
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Figure 1: Light microscope photograph of a microme-
chanical torsional spring before and after failure [4]

be neglected and increases the modeling effort. In or-
der to determine maximal acceptable mechanical stress
within the springs some experiments with special test-
ing structures were accomplished at Fraunhofer IPMS .
The results can be used to verify the two provided phys-
ical models introduced later in this paper. The basis of
the experiments were micromirrors with comparatively
short torsional springs (figure 1). They were driven in
resonant mode in a vacuum chamber, increasing the de-
flection gradually. The spring breaks at a specific de-
flection angle which is measured [4]. Conclusions re-
garding the stress can be drawn, since the geometry of
the torsional spring and the angle of fraction are known.
Table 1 summarizes the results of the experiments.

Another important finding from the experiments is
the preferred location of failure. The test structures
always broke at the end of a torsional spring (figure 1).

Table 1: Material properties of monocrystalline silicon

Value
Property Typical† IPMS ‡

critical shear stress > 3 GPa 1.4 GPa
critical tensile stress 2 to 3 GPa 0.9 GPa

†unstructured Si wafer at room temperature; static load [5]
‡experimental results; dynamic load (N > 109) [4]
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Figure 2: Torsional spring as ideal beam

2 ANALYTICAL MODEL

In order to verify and understand a numerical model,
we need an analytical model for the distribution and the
strength of the mechanical stresses within the spring.
The following assumptions are made:

A1 The torsional spring can be treated as a beam ac-
cording to solid state mechanics. (linear, ideally
elastic materials; straight edges; l � d; l � h)

A2 The spring’s cross section can be treated as a rect-
angle.

A3 Clamping effects can be neglected.

A4 Shear stress is responsible for failure.

Considering the orthotropic material properties of mono-
crystalline silicon, the torsional function Ψ can be de-
scribed by the following partial differential equation [5].

1
Gxz

∂2Ψ
∂y2

+
1

Gxy

∂2Ψ
∂z2

= −2
φ

l
ΨBC = 0 (1)

Where G is the shear modulus, φ the torsional angle,
l the length of the beam and ΨBC=0 is the boundary
condition for the cross section. Then the components of
shear stress within the beam’s cross section result in

τxz = −∂Ψ
∂y

τxy =
∂Ψ
∂z

(2)

Introducing a mean shear modulus

Gm =
l

φ It

∫
ΨdA (3)

[5] with It as the torsional moment of inertia helps to
simplify the problem. Since Gm depends on geometry
and orientation of the beam within the crystal plane, the
orthotropy of monocrystalline silicon is still considered.
For an orientation of the beam in 〈110〉-direction one
can find the following equation between quantities as an
approximated result of (3) [5], [6].

Gm/GPa =
85.8

4
(

d
h + 0.08517

)2
+ 3

+ 51.2 (4)

The maximum shear stress, which is suspected to be
responsible for failures, is located in the center of the
longer edges of the spring’s cross section. It results in

τmax =
Gm It

Wt l
φ (5)

[7] with Wt as torsional section modulus. This easy to
manage equation can be used to determine the maximal
shear stress for every beam with l � d and l � h (ful-
filling assumption A1). Table 2 shows some results of
(5) for common spring geometries.

Table 2: Maximum torsional stresses within beams in
〈110〉-direction; torsional angle φ = 24◦

Beam geometry It [7] Wt [7] Gm τmax

(l × d × h)/µm3 ·1021
/m4 ·1015

/m3 /GPa /GPa

150 × 6.6 × 30∗ 2.48 0.38 76.64 1.40
200 × 6.6 × 30 2.48 0.38 76.64 1.05
240 × 4.0 × 30 0.58 0.15 78.09 0.54

∗Fraunhofer IPMS testing structure, introduced in [4]

3 FEM MODEL

In general FEM models fit reality better than sim-
plified analytic models. It is possible to consider geo-
metrical details like roundings. Furthermore, non-linear
effects can be included without additional modeling ef-
fort. On the other hand, FEM models also have dis-
advantages. They generally require large computation
efforts. Furthermore, it is hardly possible to general-
ize single results. Thus it is necessary to repeat model
generation and calculations for every single geometry.
Another issue is the interpretation of the results. They
often strongly depend on parameters like choice of FEM
elements or meshing grid.

With our FEM model of the micromechanical tor-
sional spring, we try to reduce some problems described
above. Geometry generation and meshing is completely
parameterized, where the contour of the spring is de-
fined with a set of spline functions. This approach al-
lows the simple implementation of complex geometries
like springs with tapered ends. As a first approach, cu-
bic splines with seven equidistant grid points are used to
provide sufficient freedom of geometry. Since the springs
are always symmetrical, the splines describe only one
quarter contour. The result is a parameterized FEM
model with the nine parameters l, h and the half spring
width at seven locations.

The FEM model allows to verify the accuracy of the
four assumptions which were set up to create the ana-
lytical model. Comparing the two models leads to the
following results:
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Figure 3: Critical tensile stress at testing structure, in-
troduced in [4]; torsional angle φ = 24◦

1. For small torsional angles (φ/l < 0.1◦
/µm) and ge-

ometries fulfilling A1-A4 the analytical results ac-
cording to (5) agree with the results of the FEM
model. The shear stress is the most important
stress component and the maximum shear stress
differs by less than 15 percent even for unfavorable
spring geometries with l

d ≈ 20.

2. For large torsional angles (φ/l > 0.1◦
/µm) and/or

spring geometries with l �� d new effects arise.
The clamping can not be neglected anymore. Ten-
sile and compressive stress components at the sus-
pension of the spring increase faster than linearly
(figure 3). This matches with the observed failures
at the testing structures (figure 1).

In conclusion the analytical model can only be used
for dimensioning torsional springs under the conditions
l � d, l � h, φ/l < 0.1◦

/µm. Other spring geometries
require further analysis using FEM techniques. The rea-
son for the additional stress components is the warping
of the spring’s cross section. This effect arises with all
non-circular and non-elliptical cross sections. Because
of the insensitivity of silicon to compressive stress only
the tensile stress has to be respected in further analysis.

4 OPTIMIZATION APPROACH

To allow for larger torsional angles at maximum stress,
defined by reliability objectives, the geometry of a cer-
tain torsional spring has to be optimized. Therefore it
is necessary to reduce stress peaks. Since the height of
the spring is specified by MEMS process, the spring’s
width/contour and length are the only degrees of free-
dom. In case of a spring, which can be sufficiently de-
scribed by the analytical model, shear stress generally
decreases with increasing length. In order to retain a
given torsional spring constant it is necessary to increase
width (increasing It

Wt
), nevertheless, the maximal shear

stress will always be at its minimum for maximal possi-
ble length.

The case of a spring with local tensile stress as crit-
ical stress is even more interesting. With modifications
of the contour it is possible to modify the distribution

...

spline(x)

x

f2

0

f3

f4

S3

f1
S1 S2

/2l

Figure 4: Parameterizing of one quarter of the spring’s
contour, using straight line, ellipse and circle equations

as well as the magnitude. The maximum tensile stress
can be reduced, for example, by widening the spring at
its ends. On the other hand, such a change in geometry
leads to increasing shear stress and changes of the tor-
sional spring constant. Considering all characteristics of
the given problem, a nonlinear optimization is necessary
to find an improved spring geometry, providing a certain
spring constant with reduced maximum stress.

For solving this typical design problem the optimiza-
tion tool MOSCITO [1], [2] is used. It was designed by
the Branch Lab Design Automation of Fraunhofer IIS
Dresden for simulator-based design of microsystems and
may be combined with almost any modeling tool. It con-
tains modules for model parametrization, simulation,
calculation of error functions and optimization. Since
there is an interface between MOSCITO and the FEM
tool ANSYS r© available it is useful to combine it with
our parameterized FEM model. Reducing the number of
parameters (the dimension of the optimization problem)
and considering constraints from our MEMS process, a
new set of spline functions is introduced. It consists
of three “splines” described by a straight line (S1), an
ellipse equation (S2) and a circle equation (S3) with
constant radius, specified by the MEMS process. This
new spline set describes the contour with just four pa-
rameters f1 .. f4 (see figure 4), where f3 and f4 are the
semimajor and semiminor axes of the ellipse. The loca-
tion of the transition between S2 and S3 is determined
by the condition

d

dx
S2 =

d

dx
S3

and is calculated during model generation, using New-
ton’s approximation of roots. To rate a specific set of
parameters, for every optimization cycle a static ana-
lysis at a given torsional angle, calculating stresses and
reaction forces has to be done. Since MOSCITO needs a
scalar as return value of an optimization cycle the results
have to be combined. Therefore an objective function
is needed. A suitable objective function for the given
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Figure 5: Maximum tensile stress Sx and maximum
shear stress Sxy vs. optimization cycles

problem is for example

L(f1, .., f4) = max {w1 σmax, w2 τmax}+(w3 (kt − kt0))
2

(6)
with σmax as maximum tensile stress, τmax as maximum
shear stress, kt as current torsional spring constant and
kt0 as objective torsional spring constant. w1, w2, w3

are weighting factors. The current torsional spring con-
stant kt is calculated from the reaction forces and the
given torsional angle.

This setup enables us to optimize any desired tor-
sional spring geometry in terms of the maximal stress
for a given spring constant and spring length. The im-
portance of several stress components is considered by
choosing the weighting factors.

5 OPTIMIZATION EXAMPLE

To illustrate our optimization method an example for
a particular spring geometry was chosen and optimized:
For a current design at Fraunhofer IPMS a torsional
spring with a length l ≤ 240µm, a height h = 30µm,
a torsional spring constant kt0 = 205 · 10−9Nm/rad and
a torsional angle φ ≥ 40◦ is needed. If such a spring is
realized using standard geometry – with constant width
and maximum length – the spring’s width would result
in d = 4µm, length in l = 240µm and the critical tensile
stress at an angle of φ = 40◦ would be exceeded by 70
percent (see figure 6a; table 1). Thus an optimization is
necessary in order to fulfill the requirements.

The progression of an optimization, using the opti-
mization algorithm FSQP [1], is shown in figure 5. Every
cycle has a duration time of approximately 10 minutes
at an up-to-date Sun UltraSPARC r© workstation. After
243 cycles, the optimization stops. The result is a ge-
ometry providing a similar maximum shear stress and
decreased tensile stress, fulfilling all requirements. Com-
pared with the standard geometry, the optimized spring
is able to perform about 30 percent larger torsional an-
gles without exceeding the critical torsional and tensile
stress respectively. The deviation of the spring constant
from the objective spring constant is less than 2 per-

Figure 6: Tensile stress of the example geometry a) be-
fore and b) after optimization; torsional angle φ = 40◦;
The maximum stress is reduced by 60 percent.

cent. Figure 6 shows the tensile stress of the example
spring before and after optimization. The changes in
geometry are quite small but it is well recognizable that
the peak is reduced and the stress is distributed more
homogeneously.

6 SUMMARY AND OUTLOOK

The investigations of stress-related failure of microme-
chanical torsional springs unveiled some interesting phe-
nomenons. Spring geometries with straight contours
are not the optimum for applications requiring large
torsional angles. In order to improve reliability and
applicability of torsional springs an optimization tool
based on the MOSCITO optimization framework was
developed at Fraunhofer IPMS in Dresden. Contour-
optimized testing structures with tapered ends are fab-
ricated. Thus it will soon be possible to verify the the-
oretical results by measurements.
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