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ABSTRACT

In this paper, we present simulations of  quantum point 

contacts (QPCs) formed in semiconductor heterostructures 

over which a metal split-gate has been deposited. Biasing 

the gates creates a quasi-1D channel (ie. a wire, or a QPC 

for very short channels) which separates the 2DEG into 

source and drain regions and through which current can 

flow. Besides the usual plateaus at integer multiples of 

G0= (2e2/h), more recent experiments on QPCs however 

have found additional non-integer plateaus, perhaps the 

most noteworthy being a ~0.7 G0 conductance anomaly. 

Incorporating spin-density-functional theory (SDFT) into 

our calculations, we are able obtain similar anomalies in 

our simulations. Moreover, we find that these features can 

be correlated with the formation of a spin-dependent en-

ergy barrier structure. 

Keywords: quantum transport, heterostructures, spin den-

sity functional theory, spintronics. 

1. INTRODUCTION

Quantum point contacts (QPCs) can be formed in 

semiconductor heterostructures by depositing metal split-

gate. Biasing the gates creates a quasi-1D channel (ie. a 

wire, or a QPC for very short channels) which separates 

the 2DEG (two dimensional electron gas) that exists in the 

heterostructure into source and drain regions and through 

which current can flow. Measurements have shown that 

conductance for such structures is quantized with plateaus 

at integer multiples of G0= (2e2/h) as function of gate volt-

age[1], a result readily explained by a single electron 

quantum mechanical theory[2] More recent experiments 

however have found additional non-integer plateaus, per-

haps the most noteworthy being a ~0.7 G0 conductance 

anomaly that has been observed in QPCs[3] and wires[4]. 

Theoretically, while there is disagreement about the spe-

cifics[5,6] , it is generally believed that electron-electron 

interactions must be included to account for such effects, 

which can be done by incorporating spin-density-

functional theory (SDFT) into the transport calculations.  

In this paper, we present our own transport calcula-

tions using SDFT. Besides being able obtain ~0.7 G0

anomalies similar to experiment, we find that these fea-

tures can be correlated with the formation of spin-

dependent energy barrier structure which can, in these 

instances, allow two modes of spin-down electrons to be 

almost fully transmitted through the channel before spin-

up electrons start being allowed through. These barriers, 

which are largely the result of the exchange potential, rise 

and fall as function of the local density and one can ex-

ploit this to tune the spin-filtering effects. For example, 

varying the density, one can evolve from a ~0.7 G0  anom-

aly to fully formed plateau at 1.0 G0 , depending on how 

well the density dependent barrier transmits or blocks the 

second spin-down mode (spin-up modes are still blocked 

even in this case). We can also account for additional fea-

tures such as anomalies at ~0.3 G0  and “missing” plateaus 

at higher conductances, features which have recently been 

experimentally observed [7].

Figure 1: On the left, the split gates that form the model QPC. 

On the right, the contours of the confining potential at the level 

of the 2DEG. 

2. ACHIEVING SELF-CONSISTENCY IN A 

MODEL QPC 

We model a QPC formed by split gates as shown in the 

right panel of Fig. 1. For the initial 2D confining potential 

generated by these gates, we have used the model potential 
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suggested by Timp [8] : 
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Here l and w are the lithographic width (350 nm) and gap 

(140 nm) between the electrodes, repectively, and Vg is the 

applied gate voltage. The vertical distance between the 

2DEG and the gate, z, has been taken to be 70 nm.  The 

left panel shows the contours of potential that arise for a 

Vg=-0.55 V in a domain at the very center of the QPC. It is 

over this domain, which is actually smaller than the as-

sumed lithographic dimensions of the QPC, that the simu-

lations are performed. We have found it is unnecessary to 

go further out from the center as the answers we obtain 

change very little after ~5 propagating modes are allowed 

at the outer boundaries of the simulation region. 

Including self-consistent effects through the Kohn-

Sham local spin-density functional method[9], the total 

potential for spin   is given by: 

corexchHconftot VVVVyxV ),( .  (3) 

where VH is the Hartree potential, V cor is the correlation 

potential for which we have used the expression derived 

by Tanatar and Ceperly[10] and V exch is the exchange 

potential as obtained by Stern[11]. Since there is only 

strong confinement in one direction, instead of a full two 

dimensional treatment of the problem, our approach was 

to break the QPC into a series of one dimensional slices 

perpendicular to the x axis, and solve for the self-

consistent potentials of each slice individually using a 

method analogous to that originally developed for quan-

tum wires. Following Berggren and Yakimenko[7], a 

weak Zeeman term ( Bg B
~10-6 eV) is included in the 

first few iterations of each self-consistent loop to break the 

initial spin degeneracy. 

3. CALCULATING THE CONDUCTANCE 

In keeping with the results for the self-consistent po-

tential, our conductance calculations are performed on a 

square finite-difference lattice with lattice constant, a.

Position can thus be specified by integers: x=ia and y=ja.

The conductances for the two spin orientations are com-

puted separately. Keeping only the lowest order terms in 

the approximations of the derivatives, the 2D Schrödinger 

equation for electrons of spin  becomes : 
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where V i,j represents the descretized of the full potential 

at site i,j and  is the energy. Since we are interested in 

current flow through the QPC, the situation which we con-

sider is one in which the device is enclosed inside an ideal 

quantum wire, which extends outward to  along the x-

axis. To calculate the transmission through a device, the 

modes are injected from the left side only with unit ampli-

tude.  Using (4), one can derive a transfer-matrices equa-

tion that relates adjacent slices to achieve this purpose. For 

a structure N slices long, one must thus solve the transfer 

matrix problem: 

r
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where t is a matrix of transmission amplitudes of waves 

exiting from the right part of the structure, and r  is the 

matrix of amplitudes of waves reflected back towards the 

left. Given t , one calculate the conductance, G , using the 

Landauer-Buttiker formula: 
2
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where tn,m represents the transmission amplitude of mode n

to mode m and the summation is only over propagating 

modes. The v’s  are the mode velocities, which can be 

obtained by taking the expectation value of the current 

operator. Unfortunately, equation (5) in its current form is 

made numerically unstable by the exponentially growing 

and decaying contributions of the evanescent modes that 

accumulate when the product of transfer matrices is taken.  

Usuki et al.[12] overcame this difficulty be rewriting the 

transfer matrix problem in terms of an iterative scheme. 

The numerical stability of the Usuki et al. method in large 

part stemmed from the fact that the scheme involved prod-

ucts of some of the original matrices with matrices that 

were inverted, which tends to cancel out most of the trou-

blesome exponential factors.   

4. RESULTS 

In Fig. 2, we plot the total conductance (the sum over 

the two spin channels) vs. Vg for a series of 1D electron 

densities, n1D . These densities, set at left boundary of the 

simulation domain, are related to the Fermi energy, EF,

through  

m mFD EEmn
,

2/1*

1 //)(2 ,  (6) 

where
mE are the energies of the modes and the sum is 
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restricted over those that propagate. Given n1D , one can 

determine EF which in turn can be converted to a 2D den-

sity. Thus, one can chooses n1D to yield reasonable with 

typical experimental measured values of the latter quan-

tity. Here, the different curves correspond to different one-

dimensional electron densities: 1.68 – 2.38  106 cm-1 (EF

= 12.9 – 14.0 meV), from right to left respectively.  For 

the confining potential considered, there are no actual 

conductance plateaus at 2 G0, only points of inflection in 

the conductance traces in that region, which shift accord-

ing to the density.  At ~ G0, some traces show an actual 

plateau, while others develop a hump that falls somewhat 

short of this value, which can even drop below ~ 0.5G0 as

the density is varied. Many individual traces have pairs of 

features below ~ G0 and ~ 0.5G0 , respectively.

In Fig.3, the conductance is plotted for a single density, 

n1D = 1.96 10-6 cm-1.  This trace has a hump-like plateau 

at ~0.8 G0 and a point of inflection at ~0.3G0. The contri-

butions from spin-up and spin-down channels to the total 

conductance are also plotted. As is evident, the spin-down 

contribution initially dominates the conductance(dotted 

line), even up to almost G0. The implication is that two

spin-down modes can be almost fully transmitted through 

the QPC in this case before the first spin-up mode makes it 

through. Insight into the different transmission characteris-

tics can by obtained by looking at the self-consistent QPC 

potentials seen by the two spins. In the panels below, three 

pairs of potentials corresponding to gate voltages -0.50 V 

(i), -0.49 V (ii) and -0.47 V (iii) are shown.  

Figure 2: Total conductance vs. Vg  for a series of electron densi-

ties.

Looking the insets, we see that compared with Fig. 1, an 

additional potential barrier structure becomes superim-

posed on top of the QPC when self-consistency is intro-

duced, a structure that depends on whether the spin is up 

or down. This structure tends to weaken as more modes 

are allowed to pass through the QPC (note that the addi-

tional barriers are barely visible in panel (iii), which corre-

sponds to 2 G0 ). Since the spin dependent barriers 

shown in the insets of the lower three panels of Fig. 3 

show relatively little variation along the y-direction, one 

can think of them as essentially quasi-one-dimensional. In 

the main parts of the lower three panels we adopt this 

point of view and plot the spin dependent potential aver-

aged in the y-direction, <V(x,y=yo)> vs. x for the three 

cases. Here, yo is the center of the QPC.   

Figure 3: QPC conductance for a one-dimensional density, n1D = 

1.96  106 cm-1 (EF = 13.4 meV). The solid line is the total con-

ductance variation, while the black and open circles show the 

spin-up and spin-down contributions to the conductance. The 

self-consistent potentials for spin-down (left insets) and spin-up 

(right insets) at the indicated points are plotted below, along with 

the averaged potentials. 
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Figure 4: The average density along the x-direction is plotted for 

spin-up (open circles) and spin-down (black circles) for the three 

cases discussed above. 

For case (i), the spin-down and spin-up potentials line 

up at the center of the QPC. However, away from the cen-

ter, they deviate, with spin-down dropping significantly 

below spin-up, splitting with the latter and developing 

“shoulders”. Previously noted in the context of quantum 

wires[13], this potential splitting, which can be larger than 

the level spacing of the modes, is largely the result of the 

exchange potential and will oscillate as a function of the 

local density. The result of is that spin-down sees a tunnel-

ing barrier that is essentially the same height, but is much 

narrower. These barriers allow for the partial transmission 

of a single spin-down mode, but completely blocks spin-

up modes from getting through. This effect can be seen in 

the top panel of Fig. 4, in which the average density along 

the QPC is plotted. For (ii), the spin-up barrier remains 

comparatively high, but the central portion of the spin-

down barrier has now collapsed to the level of the “shoul-

ders”. With this collapse, the first spin-down mode is al-

lowed to be fully transmitted and large portions of a sec-

ond mode now also make through the barrier, yielding the 

~0.8G0 conductance in this case (note the higher spin-

down density of the right in panel (ii) of Fig. 4). Mean-

while, the spin-up modes are still blocked. As Vg is re-

duced and the QPC is allowed to become more open, the 

spin-down and spin-up barriers gradually start moving 

back together again, with the spin-up modes gradually 

being transmitted through the QPC. By (iii), they have 

fully converged. Since the potential splitting effect noted 

earlier is known to eventually vanish at large densities, 

this convergence is not unexpected. Despite this, it is evi-

dent that the self-consistent potential is still has the form 

of an extra barrier superimposed over the initial QPC con-

fining potential. Its presence prevents modes from being 

cleanly transmitted through the QPC. This is why the 

conductance only shows an inflection point at 2G0 rather 

than a fully formed plateau. 

In conclusion, as in recent experiments, our SDFT cal-

culations yield additional structure besides the standard 

conductance plateaus at integer values of G0.  These can 

be accounted for by the formation of density and spin de-

pendent barriers in the QPC region which can act as spin 

filters. The barriers themselves are rather generic features, 

however, a major effect of changing n1D is to change their 

relative transparency. This is why Fig. 1 shows plateaus 

shifting and evolving for different values of  n1D.
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