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ABSTRACT

This paper describes the development of an intel-
ligent sensor architecture, where signal conditioning is
performed onboard the sensor itself, in software. Our
proposed architecture uses data-based models of the sen-
sor for signal conditioning and fault detection, so that
the sensor is robust to degradation and its processed
output includes an estimate of uncertainty with each
measurement value for higher level sensor management
processes such as data fusion. We use a data-based ker-
nel representation for the signal conditioning system,
which avoids deriving physical models of the sensor from
first principles. A sparse realisation of the kernel model
provides fast predictions and opportunities for efficient
updating of the sensor model to enable reconfiguration
of the sensor model based on incoming data. We show
that these techniques have the ability to detect degra-
dation in a MEMS sensor, using elevated temperatures
in laboratory conditions.

Keywords: Intelligent sensor, condition monitoring,
novelty detection, kernel density estimation

1 INTRODUCTION

An intelligent sensor can be defined as a sensor that
incorporates the facility for autonomous on-board signal
processing, to enable real-time processes such as fault
detection, fault isolation and signal conditioning to oc-
cur within the sensor itself. Whereas fault detection and
fault identification tasks are traditionally implemented
at the higher-level sensor management level, we propose
that an intelligent sensor should implement this signal
conditioning in software modules at the sensor level as
shown in figure 1, using similar approaches as the re-
search on self-validating sensors at the University of Ox-
ford [1], [2].

The motivation behind this approach is that the sen-
sor management can assume higher confidence in output
signals from the sensor, thus reducing the requirements
for redundancy in sensor networks. Such a sensor should
also be able to detect and tolerate drift and ageing ef-
fects of the sensing element, which is of considerable
importance for devices such as MEMS chemical sensors
which are prone to long-term drift due to poisoning.
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Figure 1: Software modules required for an intelligent
sensor

The conditioned output from this sensor should provide
a measurement value §(¢) in all situations, together with
an estimate of the uncertainty e attached to the predic-
tion for use in data fusion processes at the sensor man-
agement level. Further sensor outputs include a quality
flag describing whether the sensory data is valid, and an
estimate of the likely reason for poor data.

A generic intelligent sensor architecture can be ap-
plied to all types of sensor, with device-specific data-
based models performing real-time signal conditioning
tasks. Pre-processing converts the raw signals z(t) in
the sensor modality (e.g. °C or acoustic intensity) into
an engineering signal, such as voltage, and calibrates the
signal (which might be updated periodically to account
for drift of the sensor), and provides basic filtering to
eliminate noise and thus improve the SNR of the sensor
system.

Condition monitoring algorithms compare sensor sig-
nals with those predicted by a sensor model. A signifi-
cant residual error between these two values may be in-
dicative of sensor drift or a fault. Nonlinear data-based
models such as support vector machines (SVM) are used
to model the sensor for calculating the residual using
time series prediction. Unlike analytical models, these
techniques use example data to train a model of the sys-
tem and therefore avoid having to derive a mathematical
model of the system from first principles. Due to their
sparsity, SVM models can produce parsimonious sensor
models, which is advantageous for fast real-time signal
processing. The data-based model can also be updated
to reconfigure the sensor for drift or ageing mechanisms.

Kernel-based models such as SVM provide direct es-
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timates of prediction uncertainty e, which is a prerequi-
site for data fusion processes. The same SVM architec-
ture can be used for novelty detection using a density
estimation approach, whereby abnormal sensory data
can be identified using the distribution of healthy sen-
sor data. In the current study, the kernel-based density
estimation algorithms are tested on a MEMS-based ac-
celerometer system that is subjected to a high temper-
ature environment.

2 CONDITION MONITORING OF
SENSORY DATA

The use of sensors to perform condition monitoring
is commonplace, for example, in mechanical systems
to detect the onset of wear in bearings and mechani-
cal components. Such systems may rely on a novelty
detection approach, where a feature vector of the cur-
rent behaviour is compared with the mode of operation
during periods of operation when the machinery was
in a healthy state. Ypma [3] provides a comprehen-
sive background to condition monitoring using novelty
detection of machinery. In a rotational system where
accelerometers are used to detect wear in roller bear-
ings, the feature vector may be derived from the fre-
quency spectra of the measured vibration. Degradation
in the performance of the bearing can be detected by
observing frequency spectra components that are not
apparent during trouble-free operation. A priori knowl-
edge about specific failure mechanisms of the system
and their usual influence on the feature vector signature
may enable the condition monitoring system to isolate
the device-specific faults once novelty detection has de-
tected abnormal spectra.

The optimal approach to performing condition mon-
itoring of the sensor itself is less obvious. Whereas a
rotating machine might have a well-defined frequency
spectrum corresponding to normal operation, an ideal
accelerometer is expected to sense across a wide range of
excitation amplitudes and frequency spectra that are de-
pendent on the vibration source rather than the health
of the sensor. Moving the accelerometer to a new envi-
ronment should therefore not cause the intelligent sen-
sor to predict that it is suffering a fault. Deriving the
feature vector for the novelty detection from the fre-
quency spectra alone is likely to lead to high levels of
false alarms if the sensor is attached to an unusual vibra-
tion source. For a given sensor type, a feature vector is
required to be chosen that is representative of a healthy
mode of operation, and which highlights the onset of
changes in sensor behaviour due to a failure or defect.

2.1 Density estimation

A density estimation scheme is used for the novelty
detection process. Density estimation may be defined

as the process of estimating the underlying probability
density function (pdf) for a set of data observations [4].
In the condition monitoring scenario, this technique pro-
vides a method for detecting whether a given set of new
data belongs to the same underlying data distribution
as the pdf deduced from example data observed during
healthy operation. A dataset that fails this hypothe-
sis may be classed as abnormal or novel, which may
be representative of a failure mode of the system under
consideration.

Given a set of example data during which the sen-
sor is operating in a healthy state, the non-parametric
density estimator estimates the data’s pdf directly from
the data without any necessity for a priori information
about the distribution. Whilst density estimation us-
ing non-parametric kernel techniques such as Parzen
windows is well advanced (see for example, [5]), mak-
ing predictions using this approach is computationally
demanding because all training data is used with the
model. Therefore, for this application where minimising
processing requirements is crucial, density estimation is
achieved using SVM which allows for a sparse solution.
A further difference is that the density estimation pro-
cess chosen for this study is to convert the problem to
a regression problem closely following the procedure in
Chen et al [6], briefly summarised below.

If a set of data x belongs to an underlying data dis-
tribution with a true density p(x) then the objective is
to estimate this density p(x) using (1), subject to the
constraints that the weights 3 should sum to unity and
all of the weights should be non-negative. For this work,
K is a Gaussian kernel function.

N
=3 Bk (x,xi), (1)

k=1

From statistics, the distribution function F(z) of a con-
tinuous random variable is related to the underlying
density function by

@)= [ sl 2)
F(z) can be approximated from a sample of data drawn
from the distribution by the empirical distribution func-
tion (EDF)

N m
Z 110 — =20 (3)
k: Jj=1

which is known to be a good approximation of the true
cumulative distribution function. 6(z) is known as the
indicator function, and takes a value of 1 if z > 0 and
0 otherwise. The weights 8 are solved using regres-
sion of the EDF in the image space, using a mean field
method [7]. A particular advantage of this algorithm is
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that training reduces to a linear programming optimi-
sation, rather than the more usual quadratic program-
ming burden. Fast model updates make it feasible to
autonomously reconfigure the sensor’s models.

3 DETECTING FAULTS IN MEMS
SENSOR

The novelty detection algorithms were tested by sub-
jecting a dual-axis ADXL203 accelerometer to high tem-
perature conditions in an environmental chamber. A
sheathed cable was used to transmit vibrations from an
external mechanical shaker to the accelerometer, allow-
ing data to be captured at the high temperature condi-
tions without risking damage to the shaker, and limiting
the effect of the high temperature on the characteristics
of the vibration.

Data corresponding to healthy sensor operation was
recorded, for a range of excitation frequencies and across
the specified temperature range of the sensor (-40°C to
125°C). Each channel was sampled at 20kHz, and in-
cluded an anti-alias filter and a high pass filter to remove
unwanted mains pickup.

3.1 Feature vector

The feature vector is assigned derived features from
a window of the time history recorded for each chan-
nel of the dual-axis accelerometer. Three independent
features were chosen to represent the operation of the
sensor. The first two dimensions include the mean value
of the windowed time history for each of the z and y
channels. Changes in these values over time indicate a
drift in the sensor’s behaviour, perhaps causing bias ef-
fects. The third dimension is the correlation coefficient
between the measured frequency spectra for the x and
y channels, over the same time window. The reasoning
for this measure is that for a mechanical system, it is
highly likely that there is some degree of cross-coupling
between accelerations in the z and y directions, which
would result in common frequency components in the
spectra for the two channels. It is therefore argued that
if there is negligible correlation between the vibration
spectra for the two channels then at least one of the
channels is malfunctioning. For FFT calculation effi-
ciency, all three features were calculated for time win-
dows of 1024 samples.

3.2 Sensor performance beyond 125°C

The accelerometer package is rated to a maximum
operating temperature of 125°C, and a maximum stor-
age temperature of 150°C. Referring to figure 2, a strong
reduction in sensitivity is apparent once the accelerom-
eter is subjected to temperatures in excess of the 125°C
limit. This is most obvious when comparing the peak at
1kHz (corresponding to the fundamental drive frequency
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Figure 2: Comparison between the power spectral am-
plitudes for the accelerometer when subjected to tem-
peratures of 30, 120 and 130°C. Note the strong reduc-
tion in sensitivity at the fundamental drive frequency

for operation at 130°C.

of the shaker) across the three spectra plots. The spec-
tral amplitude at 1kHz is comparable for both 30°C and
120°C time histories; however, there is a tenfold reduc-
tion in the sensitivity when the accelerometer’s ambi-
ent temperature increases to 130°C, despite there be-
ing no change in the acceleration amplitude provided by
the shaker system. This reduction in sensor sensitivity
is also apparent at higher temperatures, and through-
out the operating frequency range. It is not obvious
how to use this feature in novelty detection because it
is difficult to differentiate between a genuine reduction
in source vibration amplitude and a reduction in the
sensor’s sensitivity. Future work will address this issue
because incorporation of adaptive sensor gain to com-
pensate for this loss of sensitivity may provide a useful
method for reconfiguring the sensor according to envi-
ronmental conditions. Further tests are also required to
determine whether there is a significant change in the
device’s linearity at this temperature, which would also
be compensated in sensor software.

The environmental chamber’s temperature was in-
creased beyond the 150°C temperature storage limit as
specified by the manufacturer, in an attempt to accel-
erate the effect of ageing of the sensor element. Ac-
celerometer data was recorded in 5° steps, up to the en-
vironmental chamber’s maximum temperature of 180°C.
After maintaining 180°C for 30 minutes, one of the two
channels of the accelerometer was observed to change
its characteristics dramatically, as shown in figure 3. A
malfunctioning electronic component is suspected rather
than mechanical damage to the sensing element, because
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Figure 3: Left-hand plot shows time histories of z and
y channels before damage to sensor. Right-hand plot
shows same environmental conditions after high tem-
perature damage.

the ADXL.203 was subjected to a maximum temperature
of only 180°C. Figure 4 plots the density predicted by
the density estimation procedure, for the data recorded
as the temperature is ramped from 150°C up to 180°C,
held at this temperature for 30 minutes, and then cooled
t0 90°C. A strong change in the density beyond the 604"
dataset corresponds to the beginning of data after the
30 minute hold at 180°C and therefore coincides with
the visually observed damage. A software threshold in
the sensor can successfully classify this data as abnor-
mal. Since abnormal data is detected for all subsequent
datasets, the sensor should recognise that the data is
not rogue, but that the sensor is partially damaged.

4 CONCLUSIONS

A generic architecture for intelligent sensors has been
proposed that is applicable for all types of sensors. Soft-
ware modules in the sensor perform tasks such as condi-
tion monitoring, providing the sensor management with
more reliable measurements. Provision of estimates of
measurement uncertainty make sensory data useful for
data fusion processes. Data-based models are selected
for the sensor models within the software modules, be-
cause these avoid physical models of the sensor which
are generally difficult to derive and limited to linear be-
haviour. An SVM model is chosen in the current work,
which offers parsimonious sensor models, and low pro-
cessing requirements for predictions and periodic up-
dates of the model to allow for changes in sensor be-
haviour over time. Density estimation for novelty detec-
tion uses an SVM approach formulated as a regression
problem. The algorithms have been successfully tested
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Figure 4: Plot of the density predicted by the SVM-
based density estimation for the incoming accelerometer
data.

on a MEMS accelerometer that suffered an electronic
fault whilst being subjected to high temperatures.
Future work aims to investigate methods for mak-
ing the novelty detection sensitive to the observed loss
in sensitivity of the accelerometer at temperatures be-
yond the specified operating regime of the sensor. Auto-
matic software reconfiguration using adaptive gain may
increase the useful temperature range of this device.
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