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ABSTRACT 

This paper investigates the degree of damping control 
provided by parametrically pumping a harmonically forced 
microresonator. It is shown that the parametric excitation 
terms result in reduced damping levels and thus increases 
the Q-factor of the mode of vibration to which it is applied. 
The increased Q-factor of the parametrically enhanced 
resonator permits reduced forcing levels and thus may 
provide a suitable method for minimising electrical 
feedthrough and improving sensor performance. 
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1 INTRODUCTION 

Parametrically excited systems have been well known 
for many years and an extensive analysis of such systems 
has been available in the literature since the 19th century 
[1]. Parametric excitation has been utilized since the 1960’s 
in microwave, electronic and optoelectronics devices for 
amplification or harmonic generation [2]. 

In the MEMS area it is only in the last decade that 
parametric excitation has been investigated [3-5]. In this 
paper the application of parametric excitation to a 
harmonically forced resonator is investigated. A micro ring 
gyroscope is used as a vehicle to demonstrate the 
application.  

2 EQUATIONS OF MOTION 

Figure (1) illustrates the basic form of the ring 
gyroscope. The resonator takes the form of a planar ring of 
radius a, width b and thickness d and is supported by a 
suspension. Actuation is provided electrostatically through 
a cyclically arrangement of electrodes which are the same 
thickness as the ring and displaced radially from the outer 
surface of the ring by a distance ho.

The electrical energy stored in the capacitance formed 
between the ring (assume held at Earth potential) and the 
plurality of electrodes, each biased with a voltage Uk may 
be expressed in the form 
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The radial displacement u of a point of the centre line of the 
ring when it is vibrating in the primary mode of the 
gyroscope may be expressed in terms of the undamped, 
unforced flexural mode of vibration of an unsupported ring 
by: 

1 cosu q n    (2)

where q1is the generalized coordinates associated with the 
mode. The radial displacement of the ring is assumed to be 
small compared to the nominal gap separation ho and thus 
terms of order greater than (u/ho)

3 may be ignored. 

Figure (1) Photograph of Ring Gyroscope 

The generalized stiffness and forcing components may be 

found by calculating 
2

2
1 1

,E EdE d E
dq dq

. When actuation is 

provided by the pair of voltages ˆ and U t U t applied to 

two sets of P and Q electrodes the equation of motion may 
be expressed in the form 

(3) 
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The terms m and k are the generalised mass and stiffness 
values corresponding to the primary mode of order n and 
are given by 
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By introducing the non-dimensional parameters 
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 where Up is the voltage at which 

electrostatic pull-in occurs, the equation of motion may be 
written in the form 
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3 PERTURBATION ANALYSIS 

 In normal operation ˆ, <<  thus <<1.pU U U  When the 

excitation voltages ˆ and U U are periodic ˆ and may be 

represented by Fourier series 
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The equation of motion becomes 
      

(5) 

Equation (5) represents a Hills equation. As normal 
operation occurs under vacuum, the damping ratio is small 
and has been conveniently expressed in terms of the 
perturbation parameter  as 1 1. With the equation of 

motion in this form the solution may be investigated using a 
multiple scales perturbation method. The solution to 
equation (5) can be written as the asymptotic expansion
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Substituting equation (6) into equation (5) and equating 
terms of like powers in  gives the recursive relations 

(7) 

(8) 

The general solution to equation (7) is   
(9)

The terms resulting in resonance in equation (8) may be 
explored by expressing the forcing and parametric 
excitation frequencies in the form 

  (10) 

where ˆand denote mistuning from the resonant 
frequencies. To ensure the solution defined by equation (9) 

is uniform in t̂ the terms resulting in an unbounded  
solution must be removed. This yields the pair of 
simultaneous equations relating amplitudes Ao and Bo
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(11)

(12)

Assuming a solution to equations (11) and (12) of the form 

(13)

For the most practical applications the mistuning 

parameters are related by ˆ
2

. The response amplitude 

obtained from equation (13) for the case where ˆand 

are both non-zero is be given by 

(14)

When the parametric excitation is not applied 0  and the 
response amplitudes are given by 

(15)

QUALITY FACTOR CONTROL 

The response described by equation (15) is that of a 
conventionally forced resonator and thus damping limits the 
response amplitude. The quality-factor for this case is given 

by 1
2offQ . Applying parametric excitation to a 

harmonically forced resonator results in a modified 
response described by equation (14). The parametric 
excitation is manifested as a term reducing the degree of 
damping. Thus for a given harmonic forcing amplitude 
described by ˆ , the response amplitude will be amplified. 

The degree of amplification when both parametric and 
external forcing is applied compared to forcing only is 
described by  

(16) 

The quality-factor of the resonator subject to harmonic 
forcing and parametric excitation is given by 

(17) 

From equation (16) it may be shown that infinite gain 

occurs when 0C , which is met when the mis-tuning 

parameter is described by 

(18) 

The roots of equation (18) are  

(19) 

Equation (19) defines the boundary of stability for the 
system subject to parametric excitation. The effect of the 
d.c. voltage components ˆand o ou u is to reduce the natural 

frequency of the system from 1 1 to . Therefore the 

parameter corresponds to mis-tuning from the natural 

frequency described by 1 . The minimum value of the 

parametric scaling factor at which the gyroscope may be 
parametrically excited is calculated from 

(20) 

NUMERICAL EXAMPLE 

Table (1) shows the dimensions of the ring gyroscope 
considered. The natural frequency of the gyroscope has 
been assumed to equal that of thin planar ring and has the 

value -1
1 71250 rads [6]. Furthermore, a value of 

2000offQ has been assumed. Forcing and parametric 
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excitation is provided using two square waves with Fourier 

components 
1 1 1

ˆ ,   and 
2

o o r su u u u
r s

. The 

response to only the first harmonics of the excitation will be 
determined. Thus r=s=1. The boundary of stability defined 
by equation (19) is shown in figure (3). 

Table (1) Dimensions of Resonator 

By choosing the values of and  such that point C of 
figure (2) is maintained at a fixed distance from the stability 
boundary, the quality factor will be increased. The stability 
boundary must be approached from the stable region as 

shown by the curve BC. Point D resides on the line 0
and is in the immediate vicinity of the point on the stability 
boundary at which the minimum value of  occurs. Thus at 
point D both the harmonic forcing and parametric 
excitation occur at resonance. As point D approaches the 
stability boundary the amount of gain defined by equation 
(16) increases quadratically. The minimum value of  on 
the stability boundary may be determined from equation 
(20) and yields the value min 495 . The increase in the 

response amplitude when the quality-factor has been 
amplified parametrically is shown in figure (3). Excitation 

was provided at the resonant frequencies such that 0 .
In each response the harmonic forcing amplitude was 
maintained constant with ˆ 50 while the parametric 

excitation level governed by is increased. For 
and 330 the quality-factor for the parametrically 

enhanced cases has the values Qon=5Qoff and Qon=10Qoff,
respectively.  

Figure (2) Stability Boundary for Parametric Excitation 

  Response (m)  

Figure (3) Parametrically Amplified Response 

CONCLUSIONS 
The quality-factor and thus the response amplitude of a 
harmonically forced microresonator may be increased by 
parametric excitation. This may be utilized in an excitation 
scheme to minimise electrical feedthrough of the harmonic 
forcing signal and thus improve the signal to noise ratio. 
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Resonator Parameters 
a (mm) 4

b ( m) 175

d ( m) 100

ho ( m) 5

 (rads) 
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