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ABSTRACT 
 
In this paper the analysis of mistakes often emerging in 

the micromembrane sensors modeling in mechanical and 
electrical domain will be presented. Additionally the 
application of Bibnickow-Galerkin and simple iteration 
method and its convergence has been discussed. 
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1 INTRODUCTION 
 
The model simplification is one of the most important 

problems in the design process. Very often this approach 
tends to the physical phenomena violation, exceeding 
assumed domains or using the models (and commercial 
software) without taking into consideration their 
fundamental limitations. Unfortunately, there are a lot of 
publications confirming this problem. 

The paper will present the frequently appearing 
mistakes introduced in the modeling of micromachined 
pressure sensor based on silicon membrane and taking into 
account its electrostatic phenomena. Both mechanical and 
electrostatic phenomena can be wrongly described but the 
electrical one had the most important modeling 
consequences since the introduced errors lead to the 
improper description of the membrane behaviour. 

 
2 MECHANICAL DOMAIN 

 
The mechanical model of micromachined sensors can 

be described using small and large deflection theory of the 
clamped thin plate under uniform pressure and with (or 
without) additional build-in stress [10][13]. Unfortunately, 
several published solutions of large deflection include some 
minors’ mistakes. In most of cases it can be visible in the 
simulation result when comparing with FEA. The 
membrane behaviour can be described using von Kármán 
set of equations [1], with basic assumptions: quasistationary 
state, small plate thickness – considered element is a plate 
which surface deflection is similar to deflection of its 
central plane: 
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where ( )w w r=  – membrane deflection  ( ) ( )w r w r= − ;  

r – radial coordinate, 0 r R≤ ≤ ; R – membrane 

radius; ( )rφ φ=  – Airy stress function1; P   – pressure 

differences between membrane surfaces; D – flexural 

rigidity ( )( )3 2/ 12 1D E h ν= ⋅ ⋅ − ; E, h, � – Young’s 

modulus, plate thickness and Poisson’s ratio, respectively; 
2∆  – biharmonic operator; /r f f r∂ ≡ ∂ ∂ , 

2 2/rr f f r∂ ≡ ∂ ∂ , ... – differential operators. 
This nonlinear equation has been extensively 

investigated by Berger, Fife [5], Kinghtly [4], 
Ciarlet [7][8], Fox, Raoult, Simo [11], Block [12], 
Brilla [6], Christensen [9] and others. Unfortunately the 
micromembrane behaviour and introduced assumptions 
presented in the MEMSs literature is often not free from 
mistakes. The knowledge about the source of errors can 
improve the future simulation results and released CAD 
software quality. The main mistake introduced in the 
publications is taking into account model without taking 
into consideration the basic assumptions e.g.: apply 
equation (1) for the membrane with considerable plate 
thickness, taking into account not enough number of 
approximation series and base order, ignoring bucking or 
large deflection effects for operating area where it is 
required. The another group of awkward is associated with 
too high simplification level e.g. assuming in equation (1) 
that term r rrw φ∂ ⋅∂  can be neglected – unfortunately this 

simplification is improper because of r rrw φ∂ ⋅∂  value is 

comparable with r rr wφ∂ ⋅∂  depending on membrane place 
(see Figure 1), therefore cannot be take into consideration 
for whole membrane surface and lead to additional error in 
electrical domain. 

 

                                                           
1 In some publication ( )F r  is used instead of ( )rφ  Airy 

stress function, in this case ( ) ( )F r h rφ= ⋅ . 
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Figure 1 The 1 r rrh w φ= ∂ ⋅∂  and 2 r rrh wφ= ∂ ⋅∂  for 

0 r R≤ ≤  and clamped boundary conditions without build-
in stress, 50�mR = , 1.2�mh = , 0.24ν = , 300 GPaE = , 

2atmP = . 

The simplified static model of the membrane for small 
and large deflection and its approximation using equivalent 
electric circuit has been presented in the paper [16], 
therefore in this paper will be proposed method suitable for 
semi-analytical analysis of membrane deflection.  
The nonlinear set of equations (1-2) can be numerically 
solved using orthogonal base { } 1i i n

ψ
= �

, proposed for Ritz 

method [17] 
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where ( )i i rψ ψ=  - polynomial; n – approximation order.  

 
We are proposing the alternative solution. It is based on 
Bibnickow-Galerkin approach [2][3] and simple iteration 
method. It is simple comparing to others approach. 
Therefore, the membrane deflection and Airy stress 
function can be approximated by the equations (4) and (5) 
respectively. Both of them satisfy clamped boundary 
conditions without build-in stress2 ( ( ) 0w R± = , 

0r r R
w

=±
∂ = , ( ) 0Rφ ± = , 0r r R

φ
=±

∂ = ).  
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≅ ⋅�    (4,5) 

where 1, , na a� , 1, , nb b�  - unknown coefficients 
In the first iteration we have to estimate first 

preliminary solution of membrane deflection ( )w r  solving 

linear equation (6), firstly can be assumed that /f P D= . 
This assumptions is equivalent to use the small deflection 

                                                           
2 The build-in residual stress iε  can be introduced by the 

adding additional term in polynomial φ , which satisfy 

following boundary conditions /rr r ir Eφ ν φ ε∂ − ∂ = . 

theory and for that reason we known that ( )4
1 / 64a PR D= , 

2 0a = , 3 0a =  … (compare with equation (8)). 
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where /f P D=  for first iteration and 
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⋅
 for the next ones; 

and ( )
0

,
R

i ig g r drψ ψ= ⋅ ⋅� . 

In the next step, Air stress function (represented by the 
coefficients 1, , nb b� ) can be estimated from equation (7), 
taking into account the last obtained surface deflection 
( 1, , na a� ). 
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(7) 
The iteration process (calculation of equation (6,7)) is 

repeated several times in order to obtain sufficient 
accuracy, taking into account full equation form. Proposed 
algorithm has fast convergence to the final solution in the 
several iterations for 5, ,10, 20n = � �  (see Figure 3). The 
order of proposed solution can be simply changed during 
the computation to obtain required accuracy, but the 
equations (6,7) can be ill-conditioned for large 
approximation order (e.g. 10n ≥ ). The obtained exemplary 
solution has been presented in Figure 2. 

 

 

Figure 2 An exemplary normalized micro-membrane 
deflection ( ( ) 0/ limrw r w→ ,bolded line) and normalized 

Airy stress function  ( ( ) 0/ limrrφ φ→ , doted line) 

0lim 0.409681�mr w→ = , 0lim 4.81mmr φ→ = − . 
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Figure 3 Estimated error of surface deflection for n=5,10 
and P=2, 6 atm. The error has been calculated using 

following equation ( ) ( ) ( )( )2

0

Error itr
R

itr finalw r w r dr= −� , 

additionally ( ) 11

0

1.128 10
R

w r dr −= ⋅�  and 113.03 10−⋅  for 

P=2 and 6 atm respectively. 

3 ELECTRICAL DOMAIN 
 
The main problem occurs in the electro-static 

phenomena model. The most of the authors divide the 
membrane plate for several parts and describe it as the 
parallel connected capacitances, assuming charge density 
invariability on the membrane surface (for each elementary 
capacitor). 

This problem can be demonstrated for small deflected 
clamped circular membrane3. In the particular case the 

                                                           
3 The similar consideration can be performed for the large 
deflected membrane presented in the previous section. 

membrane deflection can be described by the following 
equation [10] (see Figure 2 and Figure 4): 
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The charge density on the membrane surface ( ),A rρ ϕ  

is approximately inversely proportional to its curvature 

( )k r  (for simplification we assume that 0h →  and 

0P > ), 
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therefore we obtain: 

( ) ( )( )0, lim /A hr Q k rρ ϕ →≅    (9b) 

and finally 
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where c – constant, ϕ  - angle in the polar coordination 

system; Q – total plate charge. 
 

Obtained equation allows for charge density 
estimation ( )A rρ  using equation (4). The final shape of 

charge density has been presented in Figure 6 (see also 
Figure 5). 

( ) ( )
2

0

,A Ar r r d
π

ρ ρ ϕ ϕ= ⋅�    (11) 

The charge density on the second capacitance sheet 
(electrode) is typically described by the equation 

( ) 2
B /r Q Rρ = − , hence main assumption is wrong and 

some published results are erroneous.  
 

 

Figure 4 An exemplary normalized membrane deflection 

( ) ( )( )1
/ 0

P atm
w r w

=
 derived from equation (8) for P=0.2, 

0.4, 0.6, 0.8 and 1 atm (other parameters as in Figure 2 
description). 

r/R
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Figure 5 An exemplary distribution of  ( )k r  for  

P=0.2, 0.4, 0.6, 0.8 and 1 atm.  

 

Figure 6 The exemplary distribution of ( ) ( )1k r rρ−
�  for 

P=0.2, 0.4, 0.6, 0.8 and 1 atm. 

 
4 SUMMARY 

 
As it was discussed in this paper, the mistakes can be 

introduced in electrical and mechanical domain and 
produce considerable error and model miss function. 
Taking into account the proper shape of charge density and 
membrane deflection can lead to obtain the fine accordance 
of the simulation with measured results. 
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