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Abstract

This paper presents an homogeneous (array-based)
approach for designing and manufacturing digital cir-
cuits using nano-tubes/nano-wires. As ”a strategy for
developing integrated devices with many individual el-
ements has yet to be formulated” [1], it is evident that
such an environment is a necessity for designing circuits
using nano-wires. At logic level a novel formulation for
area reduction is proposed and solved in polynomial
time using a heuristic technique. The objective is to
provide a further insight on the applicability of Moore’s
law to nanotechnology by evaluating the effects of area
on logic design.
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1 Introduction

The feature size of basic devices (such as transistors)
has constantly been decreasing over the past years. To-
day, transistors with gate lengths below 50nm can be
fabricated and exhibit excellent electrical characteris-
tics [2]. This trend has resulted in an almost expo-
nential growth in integration level of electronic chips
and integrated circuits, often referred to as Moore’s law
[3]. The architectural, and fundamental limits to this
growth have been revised several times to account for
new technologies; novel technological concepts (based
on nano-devices and nano-electronics) are projected to
be of primary importance [4] [5] [6] for future systems.
Moreover, it is expected that so-called emerging tech-
nologies will not be limited by the fundamental barriers
which are encountered today in for VLSI.

While fabrication of nano-devices presents consider-
able challenges, the high-level architectural organization
at both device and circuit levels must be addressed. The
unprecedented density and integration of these circuits
necessitate novel arrangements for connections among
nano-devices as well as input/output (I/O) of the chip;
new techniques for handling a large number of connec-
tions (inclusive of electrical wires) are required to avoid
undue heating, interference or ”cross-talk” among them
and exhibit proper control [7].

This paper presents novel techniques; a homogeneous
array based methodology for nano-circuit implementa-
tion using nano-wires (e.g. carbon nanotubes) is pre-
sented. Initially, a circuit is represented using a set of
standard Sum of Products (SoP). A minimal set of the
products is constructed to cover all SoPs using a 2-level
logic optimizer. The homogeneous array is then con-
structed by mapping each product term to a nano-wire.
A nano-wire implements and connects multiple nano-
devices to reduce the number of required contacts. A
placement of the contacts for driving the inputs to the
array and nano-devices is then formulated as a combina-
torial Traveling-Salesman Problem (TSP). This instance
is solved using the Lin-Kernighan heuristic to establish
the placement of the nano-devices and their gate con-
tacts, thus achieving a substantial saving in the physical
layout for masking. This is required due to the differ-
ence in size between a nano-device metal gate and the
nano-wire in its implementation.

2 SoP Based Array Design

Using nanotechnology, the active elements of a cir-
cuit (e.g. its transistors) can be made very small; how-
ever, the information transfer among these elements and
the extraction of output/input signals from the circuit
present difficult challenges due to the physical limita-
tion of the contacts, i.e. the size of a contact is rela-
tively large compared to a nano-device, thus often de-
grading the area benefits associated with a nano-scaled
layout. An intra-molecular circuit implementation pro-
vides a promising design alternative; simple INV and
NOR2 circuits have been proposed in [8] [9].

These techniques can be extended to circuits by uti-
lizing basic boolean transformations, such as Sum of
Products (SoP). For a SOP, each product term is mapped
to a single nano-wire and implemented in a fashion that
is reminiscent of Pass-Transistor logic design, as com-
monly encountered in CMOS. In this arrangement, one
end of the nano-wire is constantly driven to logic 1
(high), while the other end represents the logic value
of the product term. Nano-devices (as transistors) are
placed along the nano-wire, Figure 1 shows a product
term of 3 nano-devices.

Multiple nano-wires (each implementing a product
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Figure 1: Nano-wire for constructing a product term

term) can be assembled into a nano-circuit; the gate
of a nano-device occupies a rectangular area of metal
placed over a nano-wire to form a nano-device, similar to
traditional CMOS technology, i.e. a polysilicon crossing
over an active diffusion area makes a MOS device. The
metal gates are arranged in an homogeneous pattern
to build the product terms and implement the nano-
circuit. The important benefit of this approach is that
the nano-circuit design is effectively accomplished by a
conventional process, because patterning and etching of
metal gates already use this technology. In this case the
requirements are as follows: 1) the nano-wire must act
in a fashion similar to a depletion mode MOS device,
i.e. conducting with no field effect and semi-conducting
in the presence of the field effect; 2) the on-resistance
must be low, so many nano-devices can be connected in
series with little effect on logic levels; 3) the threshold
voltage must be low, thus allowing non-complementary
operation in the nano-devices. This approach is different
from [8] [9], because in the proposed design, the behavior
is not complementary and complex (top) gates can be
generated at relative ease (as multiple nano-devices can
be placed along the same nano-wire).

The proposed approach offers substantial benefits be-
cause the source-drain contacts of the device are effec-
tively removed (because the nano-wire acts as contacts
between the source and drain of the nano-devices) and
there is little added complexity in pattern-based pro-
cessing steps for the nano-wires at manufacturing (in
particular there is no need for complex patterning as
in the active diffusion areas of conventional CMOS pro-
cesses). Moreover, the Schottky barrier effect ([10]) is
considerably reduced (i.e. it is distributed among mul-
tiple nano-devices).

2.1 Sizing

A problem which is commonly encountered in the
layout for physical design, is size matching because even
the smallest feature sizes available today are substan-
tially larger than a nano-wire diameter (e.g. 130nm fea-
ture size and a 1.5nm wide nano-wire), thus degrading
the possible benefit in area (and ultimately density) due
to the small size of the nano-wires. Figure 2 shows two
horizontally aligned nano-wires, the vertical adjacency
between gates causes them to be spaced further away,
thus adding to the unutilized (wasted) area. However
this arrangement can be also viewed in a diagonal direc-
tion. In this case, the diagonal adjacency allows more

closeness between nano-wires and gates, thus enhancing
area utilization. This example highlights the importance
of gate placement for efficient layout design.

Vertial Adjacency Diagonal Adjacency

Figure 2: Effects of adjacency in gate design

Therefore, placement is a tight requirement for ac-
complishing closeness (diagonal adjacency) among gates.
Figure 3 (a) shows a simple circuit made of three prod-
uct terms, while Figure 3 (b) shows a possible modifi-
cation to increase the closeness among nano-wires, thus
effectively compressing the layout.
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Figure 3: Increasing closeness among gates

3 Proposed Combinatorial Approach

As shown previously, modifications to the layout are
required to overcome sizing differences; this process in-
volves moving rows (product term nano-wires) and columns
(gate lines). This can be solved using a graph approach
in which each row/column is mapped to a graph node;
an edge is placed between every pair of nodes (complete
graph) with a weight given by the number of adjacent
gates in the corresponding rows/columns. These graphs
are referred to as adjacency graphs. Figure 4 shows the
graph representations of the nano-circuit of Figure 3.
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Figure 4: Adjacency graphs
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The Minimum Hamiltonian cycle of these graphs cor-
responds to the optimal placement of the product terms
(nano-wires or rows) and gates (columns). However, an
optimum solution to this problem requires an exponen-
tial complexity (i.e. it is NP complete). The so-called
Lin-Kernighan heuristic algorithm [11] is utilized in this
paper; this algorithm has polynomial time with near op-
timal solution in most cases.

3.1 Example: the c17 benchmark

Consider a simple combinational circuit from the IS-
CAS85 benchmark set as shown in Figure 5. Each of
the two outputs (g22 and g23) can be expressed in SoP
form of five inputs as,

g22 = g1 · g3 + g2 · g3 + g2 · g6 (1)

g23 = g2 · g3 + g2 · g6 + g7 · g3 + g7 · g6

(2)

There are seven product terms, but two of them are
redundant, i.e. they are used in both SoPs (g2 · g3 and
g2 · g6). So, only five product terms must be imple-
mented. In general, SoPs can be minimized using a 2-
level logic optimization tool, such as Espresso [12]. The
corresponding adjacency graphs can be constructed as
in Figure 6. The arrow lines represent the solution to the
combinatorial problems for an optimal gate placement.
Figure 7 shows the original and the optimal implemen-
tations of the product terms for the c17 benchmark.
The original circuit had 8 adjacencies, four of them are
along the diagonals. The optimal circuit has only four
adjacencies, all of them are in the diagonal directions.
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Figure 5: c17 benchmark netlist

4 Conclusion

This paper has presented an homogeneous (array-
based) approach for designing and manufacturing digital
circuits using nano-tubes/nano-wires. A methodology
has been proposed for placement and reduced pattern-
ing effort for nano-wires to implement combinational cir-
cuits in Sum-of-Products (SoP) form. A combinatorial
approach has been proposed for its solution; as an op-
timal technique has exponential complexity (due to NP
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Figure 6: c17 benchmark adjacency graphs
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Figure 7: Optimal gate placement for c17

completeness), an heuristic based technique with poly-
nomial complexity has been presented for gate place-
ment to reduce the area layout of the circuit.
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