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ABSTRACT 

 
By integrating a quantum dot-mediated biosensing 

technique, dual-color coincidence detection scheme and 
oligonucleotide ligation assay, we have developed a rapid 
point mutation detection platform in a separation-free 
format. Detection of the target signal is carried out on a 
single quantum dot basis using an ultrasensitive confocal 
fluorescence spectroscopic system. Comparing with other 
nanoparticle-based, separation-free assays with single base 
discrimination sensitivity, our method shows advantages in 
speed, simplicity, and sensitivity. Moreover, we have 
demonstrated that this quantum dot-based assay allows 
point mutation detection with nearly infinite specificity. 

 
Keywords: quantum dots, coincidence detection, confocal 
spectroscopy, point mutation detection 
 

1 INTRODUCTION 
 
Recently, numerous techniques incorporating DNA-

conjugated nanoparticles have been proposed for the 
detection of specific nucleic acid sequence with single base 
discrimination specificity. These approaches take advantage 
of material’s property changes (optical [1-10], 
electrochemical [11-13], magnetic [14] or mechanical [15]) 
upon DNA hybridizations or enzyme-mediated reactions. 
Among them, the optical-based, separation-free assays have 
raised the greatest interest due to their simplicity, 
automation friendliness, and high analysis rate [16, 17]. 
More important, performing molecular reactions and 
detection in a homogeneous, separation-free format 
facilitates the binding kinetics [5, 18], thereby improving 
detection sensitivity.  

Gold nanoparticle cross-linking aggregates with 
different interparticle distances will appear different colors 
due to surface plasmon resonance of the gold, rendering 
this a method for specific polynucleotide detection [1].  The 
sharp melting transitions of gold aggregates are used to 
differentiate a perfect match target from a strand with single 
base mismatch. The limitation of this approach is that it is 
inherently a one-color system based on gray scale [2]. 
Precise temperature control is also required during test. 
Another gold nanoparticle aggregation system induced by 
non-cross-linking DNA hybridization was also reported [6, 
7, 9]. It was found that single- and double- stranded 
oligonucleotides gave distinct nanoparticle aggregation 
phenomena upon adding salt to the solutions. Nanoparticle 

aggregation was measured with a UV-visible 
spectrophotometer at bulk level, making this method less 
quantitative in low-abundant mutation detection. Gold 
nanoparticles were also used as quenchers in homogeneous 
fluorescence resonance energy transfer (FRET) assays [4, 
8]. Nevertheless, the preparation of oligonucleotide-
modified gold nanoparticles is time consuming, typically 
from tens of hours to a few days [7]. 

For today’s clinical application, assays for specific 
nucleic acid detection with single base discrimination 
specificity and short sample preparation time, but without 
the need of temperature control during test, complicated 
probe designs, and separation steps, are highly desired. 
Here we report a quantum dot (QD)-mediated biosensing 
technique that fulfills those goals. QDs (2-10 nm), such as 
CdSe-ZnS core-shell nanocrystals, have size-dependent 
tunable photo-luminescence, broad excitation and narrow 
emission bandwidths, as well as high quantum efficiency 
and photostability [3, 10, 19]. They can be surface-
functionalized with different probe molecules (e.g. 
oligonucleotides, peptides, and antibodies), facilitating the 
detections of different biomolecules including DNA, RNA, 
and proteins. By using confocal fluorescence spectroscopic 
system, QDs can be analyzed at a single dot level, making 
this QD-based assay a good way for quantitative analysis of 
genomic variants. 

 
2 PRINCIPLE OF DETECTION 

 
A schematic representation of the QD-mediated 

biosensing assay and coincidence detection scheme is 
illustrated in Figure 1. First, a biotin-conjugated 
discrimination primer and an Oregon Green 488 (OG488, 
Molecular Probes)-labeled reporter primer are covalently 
linked by DNA ligase using a perfect match target as 
template (Fig. 1A, left) [20]. After denaturing the duplexes 
by heat, the fluorescent ligation product (FLP), which is 
biotinylated at one terminus and OG488-labeled at the 
other, is separated from the template. Streptavidin coated 
QDs, which serve as nano-scaffolds, are added to the 
solution to capture the FLPs through biotin-streptavidin 
interaction. Whenever a QD-FLPs nanoassembly flows 
through the miniscule detection volume of the confocal 
spectroscopic system (Figure 1B), QD and OG488 dyes are 
simultaneously excited and the resulting photon emissions 
are separately and simultaneously detected by QD and 
OG488 detection channels (Figure 1C, left). These 
simultaneous burst signals are termed coincident signals 
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Figure 1. Schematic concept of QD-mediated biosensing assay and coincidence analysis scheme (A) Oligonucleotide ligation 
assay. (B) Confocal fluorescence spectroscopic system. (C) Coincidence detection: the coincident signals (marked with dash 
lines) serve as indicators of perfect match targets. 

 
and each pair of coincident signals is one coincidence 
event, which in fact represents the passage of one QD-FLPs 
nanoassembly. On the other hand, ligation does not occur 
and FLPs are not formed when single base mismatch targets 
are used as templates (Figure 1A, right). No coincident 
signals are seen during test (Figure 1C, right). Therefore, 
the coincident signals can be used to distinguish perfect 
match targets from single base mismatch targets. 

 
3 EXPERIMENTS 

 
3.1 Sample Preparation 

For human β-globin gene point mutation detection, a 20 
µl reaction mixture comprised of 2.4 picomoles of reporter 
primers (pAGGAGAAGTCTGCCGT-OG488), 2.4 
picomoles of discrimination primers (Biotin-
GTGCACCTGACTCCTG), 2.4 picomoles of targets 
(ACGGCAGACTTCTCCTCAGGAGTCAGGTGCA
C or ACGGCAGACTTCTCCTGAGGAGTCAGG 
TGCAC), 1 unit of T4 DNA ligase, and 1× company 
supplied T4 ligation buffer (New England BioLabs) was 
prepared. After carrying out ligation at 22 °C for half an 
hour, 1 µl aliquots were removed from ligation solutions 
and were diluted with 98 µl PBS buffer (10 mM sodium 
phosphate, 100 mM NaCl, pH 7.0) in a test tube. The test 
tube was placed in an 85 °C hot water bath for 5 min to stop 
the ligation and to completely denature primer/template 
duplexes, following by dipping in ice water bath for 5 min. 

The tube was then stored at 4 °C refrigerator until required 
for the QD coupling reaction.  

CdSe-ZnS QDs (Quantum Dot Corp.) with peak 
emission wavelength at 605nm were used in this report. 
These QDs have been conjugated with streptavidin through 
a carbodiimide-mediated coupling reaction, giving 15~25 
streptavidins on each QD. QDs were first diluted with PBS 
buffer to a concentration of 4 nM. One microliter aliquots 
of QD solution were then added to test tubes containing 
99µl diluted and heat denatured ligation solution, resulting 
in a molar ratio of 30 to 1 between primers and QDs. The 
incubation took 20 min at room temperature, with mild 
agitation only at the beginning to quickly dispense QDs in 
solution. The QD coupling solutions were further diluted 
10× prior to detection. 

 
3.2 Fluorescence Detection 

A single wavelength-excitation, dual-emission confocal 
spectroscopic system was used for fluorescence detection 
(Figure 1 (B)). A 488 nm argon laser was used as an 
excitation light source. A 100× 1.3 N.A. oil immersion 
apochromatic objective (OBJ) was used to focus the laser 
beam inside a 100 µm wide microcapillary. The emitted 
fluorescence signal was collected by the same objective. 
Dichroic mirror 1 (DM1) allowed light of wavelengths 
longer than 505 nm to pass through. A 50 µm pin hole (PH) 
was used to reject out of focus light, thus enhancing the 
signal-to-noise ratio. The detection volume of the confocal 
spectroscopic system was estimated to be ~ 1.5 fl.  Dichroic 
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Figure 2. Raw fluorescence burst signals. Each burst represents the passage of one entity, which can be a QD (red bursts, 
upper), a reporter probe (green bursts, lower), or a QD-FLPs assembly (coincident signals, marked with asterisks). The data 
was binned in 1ms and thresholds were set to be 50 photon counts/ms for both OG488 and QD. 
 
mirror 2 (DM2) allowed light of wavelengths longer than 
565nm to pass through. Two avalanche photodiodes 
(APD1&2) were incorporated to register the two filtered 
emission wavelengths (524 nm for OG488 dyes and 605 nm 
for QDs). A digital counter and a program written in 
LabView were implemented to perform data acquisition 
and data analysis. The excitation laser power was kept at 40 
µW at all time. Throughout the fluorescence detection, a 
small volume of sample (~ 5 µl) introduced to 
microcapillary was driven via hydrodynamic pumping at a 
flow rate of 1 µl/min.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Fluorescence burst signal histogram indicates the 
OG488 fluorescence signals are greatly enhanced for those 
dyes bound to QDs. 
 

4 RESULTS AND DISCUSSION 
 

4.1 Detection of Single Base Variations in 
Oligonucleotide Targets 

To reduce the effects of variability between DNA 
samples in evaluation of the assay, we began by analyzing 
single base variations in synthetic oligonucleotide targets 
which were derived from variants of human β-globin gene 
sequences. Figure 2A shows a representative trace of 
fluorescence signals measured from the sample containing 

perfect match targets. The coincident signals, marked with 
asterisks, detected in both channels evidence the formation 
of QD-FLPs nanoassemblies. In our confocal spectroscopic 
system, the analyte is measured within a stationary 
femtoliter detection volume, giving an extremely low 
background noise. Consequently, photon bursts emitted 
from single nanoassemblies could be effectively 
distinguished from background. In contrast, coincident 
signals were barely detected from the sample containing 
single base mismatch targets, suggesting the formation of 
nanoassemblies being prevented due to the lack of FLPs 
(Figure 2B). 
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4.2 Signal Amplification Due to Local 
Concentration of Organic Dyes  

To address the effect of target signal amplification 
induced by QD as nano-scaffolds, we compared the 
intensity histograms of OG488 photon bursts detected in 
the perfect match experiment, the single base mismatch 
experiment, and an additional control experiment (Figure 
3). The control experiment was conducted by measuring a 
sample containing only targets and ligation primers, but no 
T4 DNA ligase. Since ligation was prevented in this 
experiment, the fluorescent bursts detected in the OG488 
channel should come from (1) the free reporter primers, (2) 
the undenatured primer/template sandwich structures, or (3) 
the impurities in the solution. As shown in Figure 3, the 
OG488 photon bursts detected in the control experiment 
had an intensity level typically lower than 100 photon 
counts/ms. A similar result was also observed in the 
mismatch experiment. In contrast, photon bursts with 
intensity as high as 200 photon counts/ms or higher were 
detected in the perfect match experiment. Nearly all these 
high intensity photon bursts detected in the perfect match 
experiment were found to be associated with coincidence 
events, evidencing signal amplification effect through the 
formation of QD-FLPs nanoassemblies. This amplification 
effect greatly facilitates the differentiation between the 
binding-induced target coincident signals and the stochastic  
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Figure 4. Average coincident signal counts per 100 s based 
on different threshold settings for OG488 detection. Error 
bars represent the standard deviations of six consecutive 
measurements. 
 
background coincident signals. Also, unspecific photon 
bursts from impurities were filtered out using coincidence 
analysis. These results show that this QD-based biosensing 
assay is capable of detecting point mutations with nearly 
infinite specificity (Figure 4). 
 

5 SUMMARY 
 
In this report, we demonstrate that the organic 

fluorophores and semiconductor QDs can be linked to 
create a novel nanobiosensor. QD functions as a 
nanoscaffold which confines multiple FLPs in a nanoscale 
domain, leading to a high local concentration of organic 
fluorophores. Currently, we estimate that our nanobiosensor 
requires only ~ 30 organic fluorophores coupled to each 
QD to make a successful coincidence detection. This may 
open a new way of performing low abundant point mutation 
detection in separation-free format. In addition, QDs’ 
extraordinary photophysical properties such as large 
Stokes’ shift, broad absorption, and narrow emission 
spectra allow the selection of various organic fluorophores 
and QDs to make different nanobiosensor combinations, 
greatly facilitating multiplexing detections. Finally, this 
QD-mediated biosensing assay and coincidence detection 
scheme can serve as a universal detection platform, to 
which other enzyme-based techniques used to identify 
known polymorphisms and mutations such as single base 
extension (SBE) can also be incorporated. 
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