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ABSTRACT 

Controlled deposition of uniform cobalt nanoparticle 

based monolayers by a modified spin coating procedure 

wherein, the uniformity is demonstrated over the 

macroscopic scales is described.  The nanoparticle 

dispersion rested on the entire area of the 6 inch silicon 

wafer for a curing time of 5 min after which the substrate 

was spun at 6000 rpm.  The substrates were pre-coated with 

an alkyl terminated self assembled monolayer to assist the 

formation of nanoparticle based monolayer.  A time 

dependent adsorption of nanoparticles was observed 

wherein the surface coverage of nanoparticles increased 

with curing time.  The method described here is general and 

offers new opportunities to successfully employ the 

deposited films for nanoparticle based devices and related 

applications. 

Keywords: Nanoparticles, self-assembly, spin coating, 

cobalt nanoparticles, self-assembled monolayer. 

INTRODUCTION 

Interest in metal and semiconductor nanoparticles stems 

mainly from their size dependent properties that are the 

basis of a number of novel devices that have been reported 

so far.
1
   Among the various methods available for their 

synthesis, solution based wet chemical methods based on 

the “bottom-up” approach offer better control over their 

size, shape and composition.
1,2

  In order to harness the 

interesting properties of this intermediate state of matter for 

device applications, it is necessary to immobilize them on 

suitable surfaces/substrates.  Till date a number of strategies 

have been developed for this purpose that include, 

electrostatic layer-by-layer self assembly,
3
 Langmuir-

Blodgettry,
4
 oligonucleotide directed assembly,

5

organization driven by controlled evaporation of solvent, 

etc.
6
  While these strategies allow formation of uniform 

films on a limited area of the substrate, they are not easily 

scalable due to various limitations inherent in these 

strategies.  Therefore, new strategies preferably using 

preexisting techniques that are widely used in the industry 

need to be developed in order to exploit the interesting size 

dependent properties of the nanoparticles for various 

applications. 

Spin coating technique is widely used in the industry to 

controllably deposit solution based materials like 

photoresists, polymers etc. Recently, nanoparticle based 

films have has also been deposited using this procedure.  

Hong et al reported on the deposition of cobalt and silver 

nanoparticles by spin coating.
7
 They observed that 

nanoparticles based films can be successfully deposited 

provided that the depositing solution wets the underlying 

substrate.  Also, the surface coverage of nanoparticles 

increases with increasing particle concentration in the 

depositing solution.  However, multilayer formation was 

observed at sub-monolayer surface coverage beyond a 

certain particle density.  Kodama et al reported deposition 

of uniform FePt nanoparticle based films with uniformity 

demonstrated over 2.5 in. silicon disk.
8
 Their technique 

involved controlled evaporation of solvent by controlling 

the vapor pressure inside the deposition chamber whilst 

spin coating;  however, deposition of nanoparticle based 

films below 3 monolayers was not demonstrated. As 

discussed above, while deposition of multilayer and sub 

monolayer films are reported, few reports exist on the 

deposition of close packed monolayer films with uniformity 

demonstrated over macroscopic scales. 

Here we report a simple procedure for the deposition of 

uniform cobalt nanoparticle based monolayers with 

uniformity demonstrated over a 6 inch diameter, silicon 

wafer by a modified spin coating process.  The 

nanoparticles were deposited from the organic solvents, 

while the substrate was pre-coated with a self assembled 

monolayer in order to suitably wet the 

nanoparticles/depositing solution. Deposition 

characteristics were dependent on the adsorption time 

(curing time), particle concentration and the spinning speed. 

Our method involves a modified spin coating procedure 

wherein the depositing solution rested on the entire area of 

the substrate during the period of the curing time. 

EXPERIMENTAL 
Cobalt nanoparticles of sizes 6-8 nm were synthesized 

using the modified ”polyol process” wherein 1,2 

dodecanediol is used as the reducing agent.
9
  A typical 

synthesis involved heating to 200°C a mixture of Cobalt 

(II)acetate tetrahydrate (1 g) and oleic acid (1.3 mL) in 40 

mL octyl ether. When the reaction mixture reaches 200°C, 

1.5 mL of trioctylphosphine was added.  The solution 
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temperature was ramped to 240°C and allowed to stay at 

this temperature for 10 min. The solution was then cooled 

to room temperature followed by addition of absolute 

ethanol in order to separate the particles.  The particles 

were separated by centrifugation at 5000 rpm for 5 min., 

and subjected to additional 2 washing steps.   The obtained 

particles were redispersed in 10 mL toluene containing 

50µL of Oleic acid and used as stock solution.  The 

particles were characterized using transmission electron 

microscopy (Figure 1). 

Figure 1: Transmission electron microscopy image of 

cobalt nanoparticles synthesized using the polyol process. 

Surface modification of the silicon oxide was rendered by 

adsorption of Octadecyltrichlorosilane (OTS) from a 1mM 

solution of OTS in toluene for 15 min.  Silicon wafer with 100 

nm thermal oxide were pre-cleaned by sonication in isopropyl 

alcohol, and water followed by heating in a solution 

containing hydrogen peroxide, ammonia solution and water in 

the ratio 1:1:5 at 70°C for 10 min.   The substrates were then 

cleaned with copious amounts of water. Nanoparticle based 

film was deposited by mounting the OTS modified wafer on 

the spin coater followed by spreading the cobalt colloid 

solution evenly on the wafer and allowed to stay for some 

time (will be referred to as curing time).  The deposition 

process concluded with spinning the substrate at required 

speed (3000 ~ 6000 rpm) for 30 sec. Toluene (boiling point = 

110°C) was chosen over other solvents since, our procedure 

involved a curing time at room temperature during which the 

evaporation of toluene is relatively slow, thus maintaining a 

constant concentration through period of the curing time. 

DISCUSSION 

Literature reports suggest that substrate wetting of the 

depositing solution is necessary to obtain uniform 

deposition using spin coating.
7,8

  Furthermore, typical 

nanoparticle synthesis involves addition of stabilizing 

agents in the stock solution to prevent aggregation.  These 

stabilizing agents (in this example oleic acid) affect the 

wetting behavior of the adsorbing/depositing solution.  In 

our case, even though toluene wets the oxide surface, 

nanoparticles did not deposit on to the unmodified substrate 

with or without the curing step.  Therefore, substrates were 

modified by depositing a self assembled monolayer of OTS 

to improve the interaction of nanoparticles with substrate 

via OTS.  On surface modification, toluene based 

depositing solution exposed even higher contact angle but 

allowed the formation of nanoparticle based films. 

Figure 2:  Scanning electron microscopy image of Co 

nanoparticles deposited onto OTS modified silicon wafers 

at curing times 0(A) and 100 sec (B).  Scale bar = 180 nm. 

Figure 3: SEM images of Co nanoparticles deposited onto 

OTS modified silicon substrates at 5 min curing time. 

A

5 µm

180 nm 
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Our deposition method is a modification of the 

conventional spin coating procedure wherein the depositing 

solution rested on the entire area of the substrate for 5 

minutes.  During this period nanoparticles adsorbed onto 

the OTS modified substrate. 

A time dependent adsorption study showed that the surface 

coverage of nanoparticles increased with curing time. 

Figure 2 shows SEM images for films deposited using 

curing time 0 (figure 2A) and 100 sec (Figure 2B)..   The 

particle density increased from 1.3x10
11

 to 2.6 x 10
11 

per 

cm
2

with a curing time increment of 100 sec clearly 

indicating the curing time dependent increase of 

nanoparticle density.  A low degree of local ordering 

among the deposited nanoparticles can also be observed in 

the sample deposited at 100 sec curing time (Figure 2B). At 

5 min curing time, scanning electron microscopy analysis 

(Figure 3B) showed that nanoparticles formed close packed 

monolayer with relatively high degree of ordering.   As can 

be seen from figure 3, the nanoparticle based monolayer 

obtained is uniform on the macroscopic scale (Figure 3A) 

with uniform separation at the nanoscale (Figure 3B). The 

particle density was calculated to be 0.96x10
12

 particles per 

cm
2
 which is higher than previously reported for 

nanoparticle based monolayer films deposited using spin 

coating.  The most likely reason for the ordering (not 

observed in the previous reports) is due to the combined 

effect of attractive non-covalent particle-particle and 

particle-substrate interactions assisted by forces involved in 

the spin coating. Our depositing solution contained added 

surfactants with high boiling points which might also play 

an important role in the ordering.  Formation of ordered 

superlattice structures in the presence of excess capping 

agents was previously observed by Klabunde et al.
10

  Future 

work would involve the study on the effect of various 

solvent and concentration dependent study on the presence 

of various surfactants.  This method of deposition was 

successfully extended to other nanoparticles systems with 

smaller sizes (data not included).  Preliminary results 

suggest that, the principle behind the deposition scheme 

described here could also be used to realize monolayer 

films using dip coating.  Further work on this is currently 

underway. 

SUMMARY 

To conclude, macroscopically uniform nanoparticle based 

monolayer films with relatively high degree of nanoscale 

order has been deposited using a modified spin coating 

procedure.  The method described here is highly 

reproducible and the uniformity was successfully 

demonstrated over a 6 inch silicon wafer.  The substrates 

were modified using a self assembled monolayer of 

organosilane that assisted the formation of monolayer films 

of preformed cobalt nanoparticles. The process involved a 

curing time during which the nanoparticle sol rested on the 

entire area of the substrate.  The deposited films show great 

promise for their use as charge storing element in the 

nanoflash memories.  An important advantage of this 

method is the thin monolayer films are deposited using the 

already established coating methods in the fabrication line.   
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