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ABSTRACT 
 

Sensitivity and selectivity are two of the most 
challenging criteria for the development of DNA biosensor 
devices. These biosensor devices have attracted interest for 
the rapid identification of pathogens in humans, animals, 
and plants, for the detection of specific genes in animal and 
plant breeding and in the diagnosis of human genetic 
disorders. Traditionally, molecular diagnostic detection has 
relied on fluorescent or radioactive labels, and signal 
transduction is performed with equipment that greatly 
increases size and cost of the whole system. Electronic 
detection is expected to involve less complicated and 
smaller instrumentation while detection limits are 
maintained. Previous efforts on impedance-based DNA 
biosensors show limitations on repeatability, sensitivity and 
selectivity. In this work, we introduce the Adjacent 
Impedance Probing (AIP) technique for DNA hybridization 
detection. In this novel method, the DNA hybridization site 
is employed for the bio-recognition event (this site does not 
necessarily need an underlying conductor surface) and a 
bare adjacent conductor electrode is employed for 
generating the largest possible impedance change through 
the deposition of an insulating material or through chemical 
passivation induced by the enzymatic reporter reaction. The 
AIP approach dramatically increases the assay platform’s 
perfomance vs. the previously employed technique that 
integrates the impedance electrode and the DNA capture 
probes. In the case of AIP, the impedance of the bare 
electrode is lower than that of a conductor surface modified 
with a self-assembled monolayer (SAM) of probe 
molecules and will not be subject to the irreproducibility 
associated with fabrication of such a SAM layer; as a 
consequence the S/N ratio will increase. The novel 
detection scheme demonstrated in this work is expected to 
find real applications for fields in diagnostics and 
biowarfare agent detection. 

 
Keywords: Biosensor, electrical detection, DNA 
hybridization, Adjacent Impedance Probing (AIP). 
 

1 INTRODUCTION 
 
The development of DNA sensor devices is continued to 

be of substantial interest because of its wide applications in 

gene analysis, detection of genetic disorders, tissue 
matching, and forensic applications [1,2,3,4,5]. Optical 
detection methods where DNA hybridization with 
fluorescent-labelled complementary strands monitored 
rapidly by confocal microscopy are the most widely used 
but normally requires a large and expensive equipment. The 
increasing demand for low-cost hand held molecular 
diagnostic devices has lead to the development of portable 
and easy-to-use biosensors. These hand held devices should 
be able to perform the diagnostics in a very short time and 
with a very limited amount of sample. Electrical detection 
scheme combined with micro-fabricated structures can 
satisfy these requirements and also allow a high degree of 
parallelism and sensitivity. 

Label free capacitive biosensors have attracted a lot of 
attention but have been the topic of debate for years [6,7,8]. 
The debate is on-going since the promise of a simple 
detection scheme of this nature remains very attractive. The 
label free capacitive biosensor is based on the theory of the 
electrical double layer [9], which in principle can be 
described as a build up of two conducting phases, one 
consists of a electrode surface and the other of an 
electrolyte solution. Modification at this interface by 
immobilization of a recognition element to the conducting 
surface will lead to a change in capacitance, the size of 
which will depend on the nature and coverage of the 
recognition element. Further change in capacitance is 
expected when analyte binds to the surface. Although there 
have been many research efforts on the label free 
biosensors [10,11,12,13,14], they normally show relatively 
low detection signals. 

To obtain a higher detection signal, several groups have 
used enzymatic amplification scheme to amplify the 
electrical signal [15,16,17,18,19]. These sensors show 
higher sensitivity, but the non-specific absorption gives a 
large background noise thus diminish the signal to noise 
ratio (S/N) [19]. In this paper, we introduce the Adjacent 
Impedance Probing (AIP) technique for DNA hybridization 
detection. In this novel method, the DNA hybridization site 
is employed for the bio-recognition event (this site does not 
necessarily need an underlying conductor surface) and a 
bare adjacent conductor electrode is employed for 
generating the largest possible impedance change through 
the deposition of an insulating material or through chemical 
passivation induced by the enzymatic reporter reaction. The 
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AIP approach dramatically increases the assay platform’s 
perfomance vs. the previously employed technique that 
integrates the impedance electrode and the DNA capture 
probes [19]. In the case of AIP, the impedance of the bare 
electrode is lower than that of a conductor surface modified 
with a self-assembled monolayer (SAM) of probe 
molecules and will not be subject to the irreproducibility 
associated with fabrication of such a SAM layer; as a 
consequence the S/N ratio will increase. As illustrated in 
Figure 1, single stranded specific DNA with sequence T1 
and non-specific DNA with sequence T2 are immobilized 
on the Au hybridization site. Single stranded biotinylated 
DNA (cT1') with a sequence complementary to T1 was 
brought onto the hybridization site. After hybidization, 
rinse steps, enzyme and substrate introduction, the 
enzymatic reaction will produce an insoluable precipitate 
on the chip surface near the hybridization site. The 
precipitation on the adjacent electrode is expected to 
introduce a high interfacial electron-transfer resistance that 
was detected by Electrochemical Impedance Spectroscopy 
(EIS). 
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Figure 1 Schematic diagram of DNA hybridization 
amplified detection by biocatalyzed precipitation of the 
insoluble product. 
 

2 EXPERIMENTAL 
 

2.1 Materials 

All reagents were purchased from Aldrich Chemical and 
used as received, unless otherwise noted. All solutions were 
made up using deionized water (18 MΩ-cm resistivity). 
DNA oligonucleotides were purchased from BioSource Inc. 
(Camarillo, CA). The two different probes used in this work 
were T1 and T2, DNA sequences (25mers) with the 5' end 
thiol-modified and with a 6-mercaptohexyl spacer.  The 
single-stranded target (CT1) is a 25mer complementary to 
probe T1 and CT1' has the same sequence as CT1 but 
comes equipped with a biotin label on the 3' end. The 
sequences and modifications of each oligonucleotide are 
listed in Table 1. 

 
 

Table 1 Oligomer nomenclature, modification and sequence 
Name Label Sequence 
T1 5’-SH-(CH2)6 5’-CACGACGTTGTAAAACGACGACCAG-3’ 
T2 5’-SH-(CH2)6 5’-GATGCCCGGGTCCGGCTAGATGATC-3’ 
CT1 none 5’-CTGGTCGTCGTTTTACAACGTCGTG-3’ 
CT1’ 3’-biotin 5’-CTGGTCGTCGTTTTACAACGTCGTG-3’ 

 
2.2 Electrode preparation 

Single-crystal Si (001) covered with a 400 nm thick thermal 
silicon dioxide was used as the substrate material. The 
substrates were cleaned using an RCA clean (5 parts 
deionized water, 1 part NH4OH, 1 part H2O2). A thin layer 
of positive photoresist (Shipley 1827) is spun at 4000 rpm 
for 40 seconds onto the substrate, this is followed by a soft 
bake at 90 °C on a hot plate for 2 minutes. The photoresist 
is then UV exposed through a patterned iron oxide mask in 
a Karl-Suss mask aligner and subsequently developed in a 
MF 319 developer. The Au hybridization and adjacent 
impedance probing electrodes were patterned by lift-off 
process.  In order to promote adhesion of the gold, a thin Cr 
adhesion layer (50 nm) was deposited by e-beam 
evaporation, followed by the e-beam deposition of a 200 
nm thick film of gold. The Au adjacent electrode was 
covered by a layer of Shipley photoresist following the 
same procedure mentioned above. This layer of photoresist 
was stripped using acetone after the thiolated-ssDNA self-
assembled on the Au hybridization electrode. 
 
2.3 Self-assembled monolayer preparation 

Prior to the formation of thiolated-ssDNA self-
assembled monolayers on the Au hybridization electrodes, 
the Au electrodes were cleaned with deionized water (18 
MΩ-cm). Next the electrodes were blown dry using pure 
nitrogen gas and immediately transferred into a solution of 
1µM of oligonucleotide probes in a potassium phosphate 
buffer (0.5M, pH=7). For the thiolated-ssDNA self-
assembled monolayers to form we allowed reaction for 15 
hours or more. Finally, the surfaces were rinsed with 
deionized water for 5 s and dried under a stream of pure 
nitrogen. 

 
2.4 Electrochemical measurement 

All electrochemical characterizations were performed 
using an Electrochemical Impedance Spectroscopy 
Potentiostat from Gamry Inc. (Warminster PA). The 
working buffer solution (100 mM phosphate (pH 7)) was 
purged with nitrogen for 10 min to remove dissolved 
oxygen before the measurements. Electrochemical 
measurements were performed in a solution of 500 mM 
[Fe(CN)6]3-/4-

  in the working buffer at a scan rate of 100 
mVs-1 with an Ag/AgCl reference electrode and a gold 
auxiliary electrode. The bare gold impedance values were 
measured in this solution after patterning and cleaning. 
Hybridization was performed by spotting the CT1 or CT1' 
solutions (1µM DNA in 1X TE buffer plus 1M NaCl) on 
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the electrode surfaces. After 4 hours, the electrodes were 
rinsed with 100mM NaCl in 1X TE buffer (10mM Tris, pH 
7.4 and 1mM EDTA) buffer for 10 seconds and dried under 
a stream of pure nitrogen prior to characterization. 

 
3 RESULTS AND DISCUSSIONS 

 
The scheme of electrochemical detection for the DNA 

hybridization based on the Adjacent Impedance Probing 
(AIP) technique is shown in Figure 1. As illustrated in the 
figure, single stranded specific DNA with sequence T1 and 
non-specific DNA with sequence T2 are immobilized onto 
the Au hybridization site. Single stranded biotinylated DNA 
cT1' with a sequence complementary to T1 was brought 
onto the hybridization site. The enzymatic reaction has been 
described previously [19]. The biocatalytic enzymatic 
precipitation on the adjacent electrode is expected to 
introduce a high interfacial electron-transfer resistance that 
can be detected by Electrochemical Impedance 
Spectroscopy (EIS). 

EIS is an effective technique to probe the features of 
surface-modified electrodes. The precipitation of the 
insoluble and non conductive product on the electrode is 
anticipated to change the capacitance and electron-transfer 
resistance at the electrode surface. The complex impedance 
can be presented as the sum of the real, Zre(ω), originating 
from the resistance of the cell, and imaginary, Zim(ω), 
originating from the capacitance of the cell. Figure 2(a) 
represents the EIS spectrum in the form of a Nyquist plot. 
A typical curve consists of a semicircle region lying on the 
Zre-axis followed by a straight line. The semicircle portion 
represented the electron-transfer-limited process at high 
frequencies and the linear part is characteristic of the lower 
frequencies range representing the diffusion-limited 
electron-transfer process. The electron-transfer kinetics and 
diffusional characteristics can be extracted from the spectra. 
The semicircle diameter equals the electron-transfer 
resistance, Ret. This resistance controls the electron-transfer 
kinetics of the redox-probe at the electrode interface. Any 
insulating modifier on the electrode is expected to retard the 
interfacial electron-transfer kinetics and to increase the 
electron-transfer resistance. Figure 2(a) shows the 
impedance spectra by Nyquist plot. For non-specific DNA 
probe T2, the charge transfer resistance Rct only slightly 
increases, while for specific DNA probe T1, the charge 
transfer resistance Rct increases dramatically after 
enzymatic precipitation. 

The EIS spectrum represented by Bode plot is shown 
in Figure 2(b). It is shown as the total impedance data 
versus frequency, with the third axis the phase angle. The 
phase angle versus the frequency curve shows that at close 
to 10kHz it’s out of phase, which means the imaginary 
impedance Zim(ω) is dominant; while at close to 100Hz it’s 
in phase, which means the real impedance Zre(ω) (charge 
transfer resistance Rct) is dominant. Comparing the four 
impedance curves at 100Hz, we can see that the total 
impedance for the bare adjacent electrode after T1 and T2 

are immobilized is very close, while after enzymatic 
precipitation, the total impedance for T1 increases 
dramatically and there is only a slight increase for T2 after 
enzymatic precipitation reaction.  
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Figure 2 (a) Nyquist diagram (Zmag versus Zreal) of the 
electrochemical impedance measurement for the DNA 
hybridization process. (b) Bode plot (Zmod versus 
frequency) of the electrochemical impedance measurement 
for the DNA hybridization process. The secondary y-axis is 
the phase angle. 
 

To obtain the statistic data, the impedance 
measurement was performed on three different chips, and 
three probes on each chip with five measurements on each 
probe. The statistical impedance data at 100Hz is presented 
in Figure 3. It is clear from the figure that the total 
impedance changes dramatically (100% increase) for the 
specific DNA probe T1 after the enzymatic precipitation 
reaction compared to the impedance for both the bare 
electrode and non-specific probe T2 after the enzymatic 
precipitation reaction. 
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Figure 3 Zmod extracted at 100Hz based on the bode plot. 
The statistical data is based on three different chips with 
three probes on each chip and with five measurement on 
each probe; error bars = 1 standard deviation 
 
 The optical image after enzymatic precipitate reaction 
is shown for both the specific and non-specific probes. For 
non-specific control experiments, there is no fluorescent 
light observed. While for specific probes, the green 
fluorescent light with high intensity was observed. The 
image was taken after one hour of the enzymatic 
precipitation reaction and the precipitate has gone a 
significant distance beyond the hybridization electrode. 
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This indicates that shorter incubation time can be applied 
and lower detection limit may be achieved. 
 

 
Figure 4 Optical image of the enzymatic precipitate on the 
hybridization and adjacent electrodes after incubation time 
of 1 hour. 

 
4 CONCLUSIONS 

 
In this work, we introduce the Adjacent Impedance 

Probing (AIP) technique for DNA hybridization detection. 
The AIP approach dramatically increases the assay 
platform’s perfomance vs. the previously employed 
technique that integrates the impedance electrode and the 
DNA capture probes. In the case of AIP, the impedance of 
the bare electrode is lower than that of a conductor surface 
modified with a self-assembled monolayer (SAM) of probe 
molecules and will not be subject to the irreproducibility 
associated with fabrication of such a SAM layer; as a 
consequence the S/N ratio will increase. The novel 
detection scheme demonstrated in this work is expected to 
find real applications for fields in diagnostics and 
biowarfare agent detection. 
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