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ABSTRACT 

In this paper, we first present successful modeling and 
analysis results of a centrifugal force driven transient filling 

flow into a rectangular microchannel. Two types of exact 
and pseudo-static approximate solutions were derived for 
the transient filling flow. The analytic solutions include 
expressions for flow front advancement, detailed velocity 
profile and pressure distribution. The obtained analytical 
results show that the filling flow driven by centrifugal force 
is affected by three dimensionless parameters which 
combine fluid properties, rectangular channel geometry and 
processing condition of rotational speed. We also first

provide a simple analytical design tool for a rectangular 

microchannel based on the modeling and analysis in this 
study. 

Keywords: Transient flow, Centrifugal force, Rectangular 
microchannel, Analysis, Design  

1 INTRODUCTION 

Recently, centrifugal pumping is regarded as an 
excellent alternative control method of the fluid flow inside 
microchannels [1-3]. The centrifugal force generates fluid 
flow with little sensitivity to the physicochemical properties 
of the working fluid, such as ionic strength, pH and so on 
[1]. It can also provide parallel pumping flows to several 
microchannels simultaneously on the same CD type 
microfluidic chip. It is important to understand the spatial 
and temporal behavior of fluid flow inside the 
microchannel for a precise design of a centrifugal 
microfluidic channel system. So far, most of previous 
studies in the literature simply adopted capillary stop valves 
making use of a surface tension effect for the purpose of 
controlling fluid flow, with lack of detailed understanding 
of the centrifugal flow behavior. In this regard, we have 
provided the analysis results and design tool for a transient 
filling flow into a circular microchannel via centrifugal 
force [4]. However, the cross-sectional geometry of 
microchannels which were fabricated by the conventional 
photolithography is usually rectangular in most practical 
cases. It might be possible to apply the analytical results for 
the circular microchannel to the design of arbitrary cross-
sectional microchannels, such as a trapezoidal cross-
sectional microchannel, based on the definition of the 
hydraulic radius. But, the analytical solutions for the 

rectangular microchannel are definitely useful and precise 
to understand and design the flow inside the rectangular 
microchannel [5]. In this regard, we report the analysis 
results and design tool for a centrifugal force driven 
transient filling flow into a rectangular microchannel in 
this study.  

2 PROBLEM STATEMENT 

Figure 1 shows a schematic diagram of a rectangular 
cross-sectional microchannel on a CD type microfluidic 
chip. Suppose a sample fluid of density, , and viscosity, ,
is injected into a reservoir located at L0 from the center of 
the CD. Now consider the fluid flow when a rotational 
motor starts rotating the CD plate in a constant rotational 
speed of . The material will flow out of the reservoir into 
the microchannel due to the centrifugal force and the flow 
front gradually advances along the radial direction of the 
CD plate. It is of our interest to be able to determine the 
flow front advancement as a function of the time t, denoted 
by l(t). Of course, this flow front advancement will depend 
on the rotational speed, , as well as the location of 
reservoir, rectangular microchannel geometry and fluid 
material properties. 

As for the design aspect, in order to deliver a sample to 
a desired position, Ld at a desired time, td, a designer has to 
decide where to put the reservoirs (L0), the widths and 
heights of the microchannels (W and H) for each channels 
along with the rotational speed ( ) of the disk. 

3 MODELING AND ANALYSIS 

The dimensionless governing equations for this 
centrifugal force driven transient filling flow and the 
corresponding boundary conditions can be stated as (the 
superscript asterisk means dimensionless parameter): 
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Figure 1: Schematic diagram of the transient filling flow 
into a rectangular microchannel on the rotating CD type 

microfluidic chip. Dark red area represents a region 
occupied by the sample fluid. l(t) indicates the flow front.  
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where w, Re, GA (=H/L), CA (=H/W), V  and p denote 
downchannel (the same as the radial direction of the CD) 
velocity, the Reynolds number, a geometrical aspect ratio, a 
channel aspect ratio, a ratio of rotational velocity to 
convective velocity and pressure, respectively. 

In this study, two types of solutions for pseudo-static 
approximate (when the inertia term is neglected, 
i.e., 1AReG ) and exact cases were successfully derived 

based on the governing equations of Equations (1), (3) and 
(5) and the corresponding boundary conditions of Equations 
(2) and (4). The obtained pseudo-static (wstatic

*(x*,y*,t*)) and 
exact (w*(x*,y*,t*)) velocity profiles are: 
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where the exponents Dstatic and D are the most important 
parameters in this study of which the physical meaning is 
an inverse of a characteristic time for flow advancement,
determined by 
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Both pseudo-static and exact filling flow advancements,
lstatic

*(t*) and l
*(t*), respectively, were found to increase 

exponentially with the time as expressed by 
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The pressure distributions for both pseudo-static 
(pstatic

*(z*,t*)) and exact (p*(z*,t*)) cases were also derived as 
follows: 
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4 ANALYSIS RESULTS 

Figure 2 shows the effects of ReGA and *
V  on D with 

regard to both Dstatic and D when CA was kept to 0.2 
(Equations (8) and (9)). The effect of ReGA on l*(t*) for the 
both pseudo-static and exact filling flow advancements is 

shown in Figure 3 when 1*
V  and CA=0.2 (Equations 

(10) and (11)). Figure 4(a) shows a typical 3-dimensional 

exact velocity profile when ReGA=10, 2.0*
V  and 

CA=0.2 at t
*=80 and also Figures 4(b) and 4(c) show the 

effect of ReGA on w
*(x*,y*,t*) with regard to the both 

pseudo-static and exact velocity profiles when 1*
V  and 

CA=0.2 at t
*=5 (Equations (6) and (7)). And finally, the 

change of the both pseudo-static and exact pressure 
distributions with respect to the variation of ReGA is 

calculated based on Equations (12) and (13) when *
V =1

and CA=0.2 at t*=5, as shown in Figure 5.  
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Since the exponent D is proportional to the square of 
*

V  while it is linearly proportional to ReGA, the flow 
characteristics are more sensitively affected by the change 

of *
V  than ReGA as shown in Figure 2.  
The calculated exact solutions coincide with the pseudo-

static solutions as shown in Figures 2, 3, 4(b), 4(c) and 5 

while 1AReG  even at high *
V  since the exact 

solutions of D, l
*(t*), w

*(x*,y*,t*) and p*(z*,t*) asymptotically 
behave like the pseudo-static solutions of Dstatic, lstatic

*(t*), 
wstatic

*(x*,y*,t*) and pstatic
*(z*,t*) under the condition of 

1AReG . However, it should be noted that the higher 

ReGA is, the more deviation between the pseudo-static and 
exact cases is, as clearly shown in Figures 2-5, due to the 
inertia force effect. The inertia force restrains a rapid 
velocity increase, thereby causing a smaller value of D

(Figure 2) and slower advancement in the real exact flow 
than the pseudo-static approximate one (Figures 3 and 4). 
Therefore, the exact solution behaviors deviate more from 
the pseudo-static ones as ReGA increases. 
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Figure 2: The calculated exponent D as a function of ReGA

for various *
V when CA=0.2 (symbols from transient D

and curves from pseudo-static Dstatic).
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Figure 3: Effect of ReGA on l*(t*) when 1*
V  and 

CA=0.2 (solid curves: exact flow, dotted curves: pseudo-
static flow). 
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Figure 4: Velocity profiles, w*(x*,y*,t*): (a) a typical 3-
dimensional transient velocity profile when ReGA=10,

2.0*
V  and CA=0.2 at t*=80, (b) Effects of ReGA when 

1*
V  and CA=0.2 on velocity at y*=0.5 and t

*=5, and (c) 
at x*=0.5 and t

*=5 (solid curves: exact velocity, dotted 

curves: pseudo-static velocity). 
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Figure 5: The change of pressure distribution for both cases 
of pseudo-static (dotted curves) and exact (solid curves) 

solutions with respect to the variation of ReGA when 
*

V =1 and CA=0.2 at t*=5. 

5 DESIGN 

Suppose a microfluidic designer wants to deliver a 
sample fluid from the reservoir location, L0, to the desired 
radial downchannel location, Ld, at a desired time, td.  Based 
on the analysis in this study, we have derived the following 
design equations to meet the design requirements: 

Design Equation I: 
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For the given design requirements of L0, Ld and td, a 
dimensional value of D can be easily determined by means 
of Equation (14) and then the width, W (or height, H), or 
the rotational speed, , is subsequently determined for 
given fluidic conditions, i.e., fluid density, , and vicosity,

, with the calculated D from the nonlinear equation of 
Equation (15). 

Therefore, by means of the above Design Equation I 

and Design Equation II (Equations (14) and (15)), one can 
easily determine W (or H) or for the given fluid 
properties (  and ), position of reservoir (L0) and design 
requirements (Ld and td).

6 CONCLUDING REMARKS 

In this paper, we have first developed the physical 
modeling and carried out the analysis for the centrifugal 
force driven transient filling flow into a rectangular 
microchannel. Two analytical solutions of exact and 
pseudo-static approximate cases were derived for this 
transient filling flow. The obtained analytical results show 
that the filling flow driven by centrifugal force is affected 

by three dimensionless parameters of ReGA, *
V  and CA

which combine fluid properties, channel geometry and 
processing condition of rotating speed. We also first 
provide a simple analytical microchannel design equations 
to meet the design requirements based on the modeling and 
analysis in this study. 
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