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ABSTRACT 

In order to respond to new demands and needs in 
modern medical diagnostics and biomedical research 
applications, a lot of new DNA detection systems have 
been reported [1-7]. However, most of these methods have 
the disadvantage of requiring the chemical coupling of a 
photoactive or electroactive tagging agent onto the target or 
the probe prior to detection. Some oligonucleotide-
functionalized conjugated polymers have enabled the 
transduction of hybridization events, without labeling of the 
DNA target [8-10]. Here we describe the use of a water-
soluble, cationic polythiophene that can specifically 
transduce the binding of an appropriate oligonucleotide to 
its target into a clear optical (colorimetric or fluorometric) 
signal. This simple, rapid, sensitive and selective 
methodology does not require any chemical modification 

on the probes or targets.

Keywords: conjugated polymer, DNA recognition, 
electrostatic interaction, sensors, fluorescence. 

1 EXPERIMENTAL SECTION 

1.1 Synthesis

Polymeric transducer, poly(1H-imidazolium, 1-methyl-
3-[2-[(4-methyl-3-thienyl)oxy]ethyl]-, chloride), was 
prepared following already published procedures [11-12] 
(Figure 1). 

S

H3C O-CH 2-CH2 Br

N

N

S

H3C O-CH 2-CH2
N

N

CH3

CH3

S

H3C Br

S

H3C OMe

S

H3C O-CH 2-CH2 N

N

CH3

FeCl 3

NaHSO 4

HO-CH 2-CH2-Br

n

CH3ONa

CuBr

Br
-

Polymer 1

 1

1

Figure 1: Synthesis of polymer 1.

1.2 DNA Hybridization 

All oligonucleotide solutions were prepared using 
sterilized 0.1 M NaCl aqueous solutions.  In a quartz 
cuvette with an optical pathlength of 1.0 cm, a 13.4 µL 
aliquot of a 7.2 x 10-4 M (on a repeat unit basis) aqueous 
solution of polymer was added to 100 µL of an aqueous 
solution of either 0.1M NaCl or 10 mM Tris buffer 
containing 0.1M NaCl (pH 8). This mixture was heated at 
55°C for 5 min, followed by the addition of 4 µL of a 1.2 x 
10-4  M solution of the capture oligonucleotide (20 nucleic 
acids), and the resulting red solution was kept at 55°C for 5 
more minutes. The appropriate oligonucleotide target 
(volume of 4 µL) was added to the solution at 55°C over 5 
minutes.  

2 DNA DETECTION 

2.1 Colorimetric Method 

The aqueous solution of the cationic, conjugated  
polymer is yellow ( max= 397 nm) (Figure 3A,a and 3B,a). 
This absorption maximum at a relatively short wavelength 
is related to a random coil conformation of the 
polythiophene derivative, any twisting of the conjugated 
backbone leading to a decrease of the effective conjugation 
length (Figure 2). As with any water-soluble cationic 
polyelectrolytes, this polythiophene derivative can make 
strong complexe with negatively-charged oligomers and 
polymers. For instance, we report here the utilization of 
three types of negatively-charged oligonucleotides: a 
capture probe sequence (X1: 5’-
CATGATTGAACCATCCACCA-3’), a perfect 
complementary target (Y1: 3’-
GTACTAACTTGGTAGGTGGT-5’), a two-mismatch 
complementary target (Y2:3’-
GTACTAACTTCGAAGGTGGT-5’) and an one-mismatch 
complementary target (Y3: 3’-
GTACTAACTTCGTAGGTGGT-5’). Upon addition of 1 
equivalent, on a monomer unit basis of capture 
oligonucleotide X1, the mixture becomes red ( max= 527 
nm) (Figure 3A,b and 3B,b) because of the formation of a 
so-called duplex between the polythiophene and the 
oligonucleotide probe (Figure 2). After 5 minutes of mixing 
in the presence of 1 equivalent of the complementary 
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oligonucleotide Y1, the solution becomes yellow ( max=
421nm) (Figure 3A,c and 3B,c); presumably caused by the 
formation of a new complex termed a triplex (Figure 2), 
formed by complexation of the polymer with the hybridized 
nucleic acids.  

Figure 2: Schematic description of the formation of the 
polythiophene/single-stranded nucleic acid duplex and the 

polythiophene/hybridized nucleic acid triplex. 

In  order to verify the specificity of  this polymeric 
optical transducer in the presence of imperfect or 
incomplete hybridizations, two different 20-mers 
oligonucleotides differing by only 2 or 1 nucleotides were 
investigated. A very distinct, stable and reproducible UV-
visible absorption spectrum is observed in the case of 
oligonucleotide target having two mismatches Y2 (Figure 
3B, d) when compared to perfect hybridization (Figures 3B 
curve c). It is even possible to distinguish only one 
mismatch (Figures 3A,e and 3B,e).  
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Figure 3:Photographs of 7.9 x 10-5 M (on a monomeric unit 
basis) solutions of a) polymer, b) polymer / X1 duplex, c) 

polymer / X1/ Y1 triplex, d) polymer / X1/ Y2 mixture, and 
e) polymer / X1/ Y3 mixture after 5 minutes of mixing at 

55 0C in 0.1 M NaCl/H2O. B) UV-visible absorption spectra 
corresponding to the different assays of photograph A. 

(Reprinted with permission from reference 11). 

The detection limit of this colorimetric method is about 
1x1013 molecules of oligonucleotide (20-mers), in a total 
volume of 100 µL (which gives a concentration of 2x10-7

M).

2.2 Fluorometric Method 

A fluorometric detection of oligonucleotide 
hybridization is also possible since the fluorescence of 
poly(3-alkoxy-4-methylthiophene)s is quenched in the 
planar, aggregated form. For instance, at 55 0C, the yellow 
form of polymer 1 is fluorescent (quantum yield of 0.03 
with a maximum of emission at 530 nm, see Figure 4, a) 
but upon addition of 1.0 equivalent of a negatively-charged 
capture oligonucleotide probe X1, the fluorescence 
intensity decreases and the maximum of emission is slightly 
red-shifted (Figure 4, b). When hybridization with the 
complementary strand Y1 takes place, the formation of a 
polymeric triplex leads to a 5-fold rise in fluorescence 
intensity (Figure 4, c).  Interestingly, upon addition of 1 
(Figure 4, d) or even 100 equivalents (Figure 4, d’) of the 
target oligonucleotide with two mismatches Y2, the 
fluorescence intensity is not significantly modified.  It is 
even possible to distinguish oligonucleotides with one 
mismatch (Figure 4 curve e).   

Figure 4: Fluorescence spectrum of a 2.0 x 10-7 M (on a 
monomeric unit basis) solution of a) poly 1,  b) poly 1 /X1 

duplex, c) poly 1 /X1 /Y1 triplex, d) poly 1/X1 / Y2 
mixture, d’) poly 1/X1/Y2 (100 equivalents) mixture and e) 
poly 1/X1/Y3 mixture at 55°C. (Reprinted with permission 

from reference 11). 

By measuring the fluorescence intensity at 530 nm 
(without recording the entire emission spectrum), it is 
possible to detect the presence of as few as 3x106 molecules 
of the perfect complementary oligonucleotide (20-mers) in 
a volume of  200µL (this is a concentration of 2x10-14M).
Moreover, by using a custom fluorometer based on a  high-
intensity blue diode (as the excitation source) and a 
nondispersive, interference filter, a few hundred copies of 
either DNA or RNA can be specifically detected [12]. For 
example, in the case of 20-mer target oligonucleotides, a 
limit of detection of 310 molecules or 0.54x10-21 mol in an 
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effective volume of 150µL, or 3.6x10-18M was obtained. In 
comparison with the perfect hybridization, the presence of 
sequences having one or two mismatches induces only a 
slight increase of the luminescence intensity and the 
addition of a large excess (100 equivalents) of the 
oligonucleotide with two mismatches only leads to a 
moderate increase of the luminescence. 

In conclusion, a novel methodology that allows simple 
optical (colorimetric or fluorometric) detection of nucleic 
acids has been developed. This rapid, selective, sensitive 
and versatile method does not require any chemical  
modification of  the probes or the analytes and is based on 
conformational changes of the conjugated backbone of 
cationic polythiophene, when mixed with single-stranded or 
double-stranded (hybridized) oligonucleotides. This 
procedure could provide inexpensive systems for the rapid 
detection and identification of nucleic acids. 
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