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ABSTRACT 
 

Filamentous phages, such as fd used in this study, are 
thread-shaped bacterial viruses. Their outer coat is a tube 
formed by thousands of equal copies of the major coat 
protein pVIII.  We constructed libraries of random peptides 
fused to all pVIII domains and selected phages that act as 
probes specific for test antigens and biological threat 
agents. Because the viral carrier is infective, phage-borne 
bio-selective probes can be cloned individually and 
propagated indefinitely without any need for chemical 
synthesis or reconstruction. We demonstrated that 
biorecognition layers fabricated from phage-derived probes 
can bind biological agents, and as a part of an analytical 
platform generate detectable signals. Phage are superior to 
antibodies: they are inexpensive, highly specific, strong 
binders resistant to high temperatures and environmental 
stresses, and thus may be suitable as antibody substitutes 
for field-use detectors. 
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1  FILAMENTOUS PHAGE AS A 

SCAFFOLD FOR NANOMANIPULATIONS 
 

The Ff class of filamentous phage includes strains f1, M13, 
and fd. These phages are flexible, thread-like particles 
approximately 1 µm long and 6-7 nm in diameter (Fig. 1, 
left). The bulk of their tubular capsid consists of 2,700 
copies of the 50-residue major coat protein pVIII arranged 
in a helical array possessing five-fold rotational axis and a 
coincident two-fold screw axis with a pitch of 3.2 nm. The 
major coat protein constitutes 87% of total virion mass.  
Each pVIII subunit is largely α-helical and rod-shaped; its 
axis lying at a shallow angle to the long axis of the virion.  
About half of its 50 amino acids are exposed to the solvent, 
the other half being buried in the capsid. At one tip of the 
particle, the outer tube is capped with five copies each of 
minor coat proteins pVII and pIX; five copies each of 
minor coat proteins pIII and pVI cap the other end. It is 
assumed that the minor proteins form rings that match the 
five-fold rotational symmetry of the pVIII array. The capsid 
encloses single-stranded DNA — the viral or plus strand. 
Longer or shorter plus strands, including recombinant 

genomes with foreign DNA inserts, can be accommodated 
in the capsid whose length matches the length of the 
enclosed DNA by including proportionally fewer or more 
pVIII subunits. Phage chimeras with foreign polypeptides 
fused to the coat proteins can be engineered by splicing the 
peptide-encoding DNA’s into the structural genes of the 
phage [1]. The grafted peptides arranged regularly on the 
body of the phage (Fig. 1, center) can act as binding sites 
for targeted bioorganic receptors and ligands, crystallization 
origins of mineral compounds, anchors for immobilization, 
or perform other predetermined roles [2,3]. Multifunctional 
phage particles with different peptides engrafted into the 
predetermined regions of the capsid can be also obtained by 
fusing corresponding DNA fragments to different structural 
genes of the phage. We call this genetically-driven 
nanomanipulation technique “phage landscaping.”  It 
allows the creation of an infinite variety of organic 
landscapes composed of 20 natural amino acids arranged in 
designed or random patterns. 

 
Figure 1: Left: Electron micrograph of filamentous phage 
fd. Center: The molecular model of landscape phage clone 
(~1% segment of the viral sheath), with foreign octamer 
peptides shown in black against the dark gray background 
of wild-type phage amino acids. Right: The molecular 
model of a mosaic phage clone  with foreign N-terminal 
peptides shown in dark and mutated amino acids 12-19 
shown in white against the gray background of wild-type 
phage amino acids. 

 
2  DIRECTED PHAGE EVOLUTION 

 
We conceived and justified a new route to mosaic phage 
clones through Directed Phage Evolution (DPE). We 
propose that the performance of phage as probes may be 
enhanced by inducing mutations in the areas neighboring 
phage-borne binding peptides.  This may increase affinity, 
selectivity and stability of phage-derived probes. The 
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principle of DPE is illustrated in Fig. 1, right, in which 
black areas show primary N-terminal binding peptides 
selected in the first round of affinity selection, and white 
areas show amino acids which are mutated to form a new 
sublibrary, which is used for selection of improved phage 
probes.  These areas correspond to the segments of pVIII 
shown in the structure below. 

     Black        Grey      White      Grey -----Buried----- 
AXXXXXXXXDPAKAAFXXXXXXXXEYIGYAWAMVVVIVGAT… 

DPE strategy was developed using the model phage 1G40 
binding β-Galactosidase (β-Gal) selected from landscape 
library f8/8.  The phage displays peptide DTFAKSMQ as 
shown in black in Fig. 1, right.  A diverse mosaic landscape 
library was constructed by cloning a synthetic 
oligonucleotide duplex encoding the β-galactosidase-
binding peptide DTFAKSMQ into existent f8/6 α-library 
with random amino acids in positions 12, 13, 15-17 and 19  
[4]. This library was used to determine if the mutations 
surrounding the binding peptides on the phage landscape 
can affect their binding efficiency.  We found that some 
mutants were able to bind ß-Gal with the same ability as 
original 1G40 phage, some were able to bind ß-Gal even 
better then 1G40, while some bound ß-Gal less effectively 
then the parent phage or even lost the binding ability. This 
data demonstrates the dramatic effect that phage amino 
acids neighboring a foreign peptide have on the binding 
properties of the peptide and probably on its specific 
conformation controlled by an integral phage organic 
landscape. The results of this study strongly confirm our 
conception of phage surface landscapes as materials with 
emergent properties and suggest a method of enhancing the 
performance of phage-derived probes by phage evolution. 

 
3  LANDSCAPE PHAGES AS DETECTION 

PROBES 
 
3.1.  Phage Probes for B. anthracis and S. 
typhimurium 
 
Phage landscaping methods were applied for development 
of phage probes against biological threat agents, such as 
Bacillus anthracis spores and Salmonella typhimurium 
[5,6,7,8]. We constructed libraries of random foreign 
peptides fused to all pVIII domains (“landscape libraries,” 
Fig. 1, center), and demonstrated that the libraries contain 
many potential probes for surface markers of pathogenic 
spores and bacteria. Phage probes were isolated in a 
nonbiased multistage selection procedure using 
immobilized spores or bacteria as a selector. The 
performance of the probes in detection of these threats was 
illustrated by a precipitation test, enzyme-linked 
immunosorbent assay (ELISA), fluorescence-activated cell 
sorting, magneto-restrictive sensors, and fluorescent, 
optical and electron microscopy. We have characterized 
landscape phage clones that bind to B. anthracis spores at a 

higher level than other species of Bacillus spores. 
Selectivity of the best phage candidate for S. typhimurium 
was studied in comparison with nine other gram-negative 
bacteria, predominately Enterobacteriaceae. A small 
amount of cross reactivity of this phage was noted with 
Yersinia enterocolitica and Citrobacter freundii.  The 
complex of phage with bacteria was visualized by 
fluorescence microscopy (not shown) and transmission 
electron microscopy (TEM) (Fig. 2), demonstrating the 
multivalent character of phage-bacteria binding. 
 
 

 

 

Figure 2: TEM micrograph of bacteria-phage complex. 
Phage is labeled with gold nanoparticles (arrows). 

 
3.2.  Phage as the Bioselective Element of 
Biosensors 
 
We developed three methods of immobilization of phage-
derived probes onto the sensor surfaces:   
• Phage self-assemblage on Langmuir-Blodgett (LB) 

phospholipid and bovine serum albumin (BSA) films by 
biotin/streptavidin coupling;  

• Direct physical adsorption of phage to the sensor surface; 
• “Phage skinning” — coating of the sensor with phage-

derived peptide probes. 

Self-assembly. Monolayers containing biotinylated 
phospholipids were transferred onto the gold surface of 
acoustic wave sensors 
(Maxtek, Sante Fe 
Springs, CA) using the LB 
method and treated with 
streptavidin and 
biotinylated phage [9]. 
Experiments were carried 
using a Maxtek TM-400 
thickness monitor. Fig. 3A 
demonstrates specific 
dose-dependent binding of 
β-galactosidase to the 
phage immobilized to the 
acoustic wave sensor in 
comparison with phage 
immobilized onto an 
ELISA plate.  It was 
observed that the affinity 
of the complex depends on 
the mode of phage immobilization and type of analytical 
platform: 0.6 nM by acoustic wave sensor versus 30 nM by 
ELISA.   The difference in affinities were attributed to the 
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         Figure 3. 
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monovalent (ELISA) and divalent (sensor) interaction of 
the phage with β-galactosidase, as is indicated by the Hill 
presentation of binding curves (Fig. 3B).  One or another 
mode of interaction probably depends on the 
conformational freedom of the phage immobilized to the 
solid surface.  Binding of the phage is quite specific 
because the response is reduced by 85% if β-galactosidase 
is preincubated with 4 nM phage.  Binding of the phage to 
β-galactosidase is very selective: presence of 1000-fold 
excess of bovine serum albumin in mixture with β-
galactosidase does not considerably change the ELISA 
signal and reduces the biosensor signal only by 4%. 

10 1 102 10 3 10 4 10 5 10 6 10 7
5000820

5000880

5000940

5001000

5001060

5001120

5001180

 

 

 

 
Fr

eq
ue

nc
y,

 H
z

S. typh im urium , ce lls/m l

Physical adsorption. Phage can adsorb directly onto gold 
surfaces [5]. In these experiments, the acoustic wave sensor 
(Maxtek) with gold electrodes was exposed to phage in 
suspension. Following an incubation period, the sensor was 
rinsed in water and tested with analytes. A sensor for β-
galactosidase showed the value of EC50 of approximately 5 
nM, what is comparable with results obtained by the above 
described self-assembling LB method.  Biosensors for S. 
typhimurium demonstrated a linear dose-response 
relationship (R = - 0.98, P <0.001) over six decades of 
bacterial concentration (Fig. 4). Scanning electron 

microscopy (SEM) (Fig. 5) confirmed bacterial binding to 
the sensor. The sensitivity of the biosensor (-10.9 Hz) was 
vastly greater than the established background. The lower 
limit of detection based on the dose-
response curve was estimated at 100 
cells/ml.  
 

Phage-skinning. As invented in this 
project, this method is based on three 
successive steps. Phages were first 
converted into spherical forms that 
resemble vesicles (Fig. 6), 
transformed into monolayers of the major coat protein 

pVIII, and then deposited onto the sensor surface by LB 
method. Spheroids were prepared 
by treatment of filamentous phage 
with chloroform. The conversion 
of phage to spheroids was 
confirmed by gel electrophoresis of 
whole phage and spheroid particles 
[2].   

Monolayers of phage coat 
proteins were prepared by allowing 
the spheroid suspension to run 
down a vertical glass rod partially 
submersed into the subphase. 
When spheroids reach the subphase surface, they are 
ruptured from the surface tension to create a monolayer of 
phage coat proteins. The formed monolayer was 
compressed and transferred onto the sensor surface [10]. 

Figure 6.

We have shown that 
monolayers prepared by the 
phage skinning method produce 
a functional biospecific coating. 
For example, Fig. 7 (top) 
demonstrates signals generated 
by acoustic wave sensors coated 
with monolayers formed from 
phage specific for streptavidin.  
For each streptavidin-coated 
bead (~1 µm d.) concentration 
(104-108 particles/ml) reacted 
with the sensors, the signal 
approaches a steady-state 
response within 500 s.  In Fig. 7 
(center), the mean values of 
steady-state output sensor 
voltages are plotted as a 
function of bead concentration 
(upper curve - squares).  The 
interaction of the beads with the 
peptide is specific since the 
signal is significantly lower for 
beads coated with BSA (lower 
line - circles).  Binding of the beads to the sensor was 
confirmed by SEM (Fig. 7 – bottom; bar = 10 µm). 
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Figure 4.  Dose-response relation of the mean output 
sensor frequencies as a function of S. typhimurium
concentration.  Curve is linear least squares fit to 
experimental data (R = −0.98, slope = −10.9 Hz, p 
<0.001).  

Figure 7.

A phage-derived biodetector for S. typhimurium was also 
prepared from spheroids combined with phospholipid – 1,2-
diphytanoyl-sn-glycero-3-phosphocholine (PC). Fig. 8 
depicts the experimental correlation coefficient, R, of 24 
assayed spheroid-PC sensors as a function of their 
sensitivity. Correlation coefficients, R, were derived from 
the linear fit to dose-response signals for each tested sensor; 
sensitivities, S, were derived from the slope of the linear fit.  
A sigmoidal fit to experimental data points indicates a very 
good strength of association (r2 = 0.92). The majority of the 
sensors (14 of 24) tend to group into one cluster at the 
positive end of the curve, possessing direct linear 
correlation with a mean R = 0.90 and mean sensitivity of 

Figure 5.
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8.1 mV. Six of these sensors (25%) possess goodness of fit 
and sensitivity greater than the acceptance criteria of R ≥ 
0.90 and sensitivity greater than 2.5 mV/decade. These 
results demonstrate proof in concept development of 
biosensors that incorporate phage as probes for the 
detection of threat agents such as S. typhimurium. 

We believe our developed technique of engineered 
phage reconstruction represents a good prospective start for 
the directed nanofabrication of bioselective materials, with    
possible application to biosorbents, biosensors,     
nanoelectronics, and other areas of medicine, technology, 
and environmental monitoring. 

 
4  CONCLUSIONS 

 
We demonstrated that genetically driven “phage 
landscaping” allows the generation of libraries possessing 
diverse nanostructures accommodated on the phage’s 
surface – a huge resource of diagnostic and detection 
probes. Biorecognition layers fabricated from the phage-
derived probes bind biological agents, and as a part of 
analytical platforms, generate detectable signals. They may 
be suitable as antibody substitutes for field-use detectors of 
critical threat agents. 
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