232
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ABSTRACT

Polyamidoamine (PAMAM) dendrimers are a new class
of highly branched spherical polymers and have emerged as
a novel synthetic drug and gene carrier. The aim of this
study is to elucidate the intracellular trafficking of
generation 4 (G4) PAMAM dendrimers. We conjugated G4
PAMAM to fluorescein isothiocyanate (FITC) and
implemented organelle-selective dyes for double-labeling
confocal microscopy studies. The results revealed that the
dendrimers were endocytosed into the endo-lysosomal
compartments. Certain amounts of the dendrimers shuttled
between lysosomes and mitochondria at later time points.
Small amounts of dendrimers were localized in the Golgi
apparatus. There was no endoplasmic reticulum (ER) or
nuclear localization of the dendrimers. These results not
only provide us invaluable information in dendrimer
biology but also have great impact to the future
development of more precise dendrimer-drug or -gene
delivery systems.
intracellular

Keywords: dendrimer,

trafficking

nanotechnology,

1 INTRODUCTION

Polyamidoamine (PAMAM) dendrimers are potential
vectors that can be easily modified. The dendrimer/DNA
complexes will form on the basis of electrostatic
interactions between the protonated amino groups of the
PAMAM dendrimer and negatively charged phosphate
groups of the nucleic acids. PAMAM-DNA complex has
been reported for efficient transfection of a broad range of

eukaryotic cells and cell lines with minimal cytotoxicity [1].

Gene transfection by PAMAM dendrimers offers
significant advantages over classical transfection methods
such as cationic liposomes and polylysines [2-3]. Instead of
fusion with the plasma membrane, it is hypothesized that
cationic lipids deliver nucleic acids into the cell
predominately via an endocytotic pathway. It is proposed
that PAMAM dendrimers enter the cytoplasmic
compartment via the endocytotic pathway similar to that of
cationic lipid. However, the fate of the dendrimer-
nucleotide complexes in a biological environment and the
mechanism of dendrimer-mediated cellular uptake of
oligonucleotides have not been clarified. Moreover, the

subcellular distribution of PAMAM dendrimers has never
been deliberately studied.

2 MATERIALS AND METHODS

2.1 Preparation of FITC-Labeled PAMAM
Dendrimer (G4 PAMAM-FITC)

G4 PAMAM dendrimer (50 mg, 3.51 pmole) was
dissolved in DMSO (2 mL) and sodium phosphate buffer
(0.1 M, pH 9, 5 mL). Fluorescein isothiocyanate (16.4 mg,
42.12 pmole) was subsequently added under nitrogen.
Reaction products were ultrafiltered, and then characterized
by '"H NMR and atomic force microscopy (AFM).

2.2 Cytotoxicity Assay

HaCaT cells were plated into 6-well plates (10°
cells/well) and were cultivated overnight. The cells were
then incubated with G4 PAMAM, G4 PAMAM-FITC, or
vehicle, respectively, for 48 h in DMEM. After the
incubation, the cells were rinsed twice with phosphate-
buffered saline (PBS), followed by addition of 200 pl
0.25% trypsin for 2 min. 800 ul culture medium was added
to each well, mixed thoroughly, then 20ul cell suspension
was dropped onto the parafilm. 20ul of 0.4% (w/v) Trypan
blue was added to the cell suspension, mixed well, and
scored under phase contrast microscope. Dead cells took up
the blue stain of trypan blue, whereas the live cell excluded
the dye. All data were obtained from at least 3 independent
experiments.

2.3 Flow Cytometry

10° cells were seeded onto 35mm dishes, incubated with
G4 PAMAM-FITC, washed with PBS, typsinized, and then
transferred to centrifuge tubes. The cells were fixed with
10% formalin for 15 min on ice, and then washed twice
with PBS. The pellet was resuspended in PBS and analyzed
immediately by flow cytometry. Dendrimer binding/uptake
was monitored using a Becton Diskinson FACS Calibur.
FITC fluorescence (488-nm excitation) was determined by
using a 530-nm band pass filter (30-nm band width).
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2.4 Subcellular Distribution of G4 PAMAM
Dendrimer

Cells were seeded on coverslips in 35mm dishes. After
18 h, the medium was replaced with G4 PAMAM-FITC
(27ug) in 2 ml complete medium for 1 h (pulse), washed
twice with PBS, chased for different time points, washed
with PBS, and then proceeded for organelle labeling.

For lysosome (Lyso), mitochondrion (Mito),
endoplasmic reticulum (ER) and nucleus staining, the cells
were incubated with pre-warmed LysoTracker® Red DND-
99, MitoTracker® Red CM-H,XROS, or ER-Tracker™
Blue-White DPX  (Molecular probes, USA) probe-
containing medium at 37[] for 1h. After thorough wash,
the cells were fixed with formalin at room temperature for
10 min and then washed again with PBS. Nuclear counter-
staining was performed by incubating the cells in the
Hoechst 33342 (Molecular probes, USA) labeling solution
at room temperature for 30 minutes. Then, the cells were
washed and mounted for subsequent confocal fluorescence
microscopy (Leica TCS SP2 Spectral Confocal System).

For Golgi staining, the cells were rinsed in
HBSS/HEPES medium, and then incubated with 5puM
BODIPY® TR C5-ceramide-BSA (Molecular probes, USA)
in HBSS/HEPES for 30 min at 400 . The cells were then
washed twice with ice-cold medium and incubated in fresh
medium at 37(] for a further 30 min. After the incubation,
the cells were washed three times with PBS, fixed with
10% formalin, and then mounted for confocal fluorescence
microscopy studies.

3 RESULTS AND DISCUSSION
3.1 AFM Investigation of FITC Labeled
PAMAM Dendrimer

Tapping mode AFM images of G4 PAMAM and G4
PAMAM-FITC dendrimers by spreading on a mica surface

with spin-coating procedure to form films was shown in Fig.

1. The AFM image of G4 dendrimers (film deposited from
the 0.01% (w/w) concentration) showed a uniform and flat
surface. Tomalia et al. reported the theoretical size of the
individual G4 PAMAM dendrimer is about 4 nm [4].
However, the diameters of the G4 PAMAM dendrimers,
from our study, ranged between 15 to 30 nm (Fig. la),
which is bigger than the theoretical diameter proposed by
Tomalia et al. Similar results were also observed by Li et al.
[5] and we believe this is due to the aggregation of G4
PAMAM dendrimers.

On the other hand, the AFM image of G4 PAMAM-
FITC dendrimers (film deposited from the same
concentration) showed a slight increase of the dendrimer
diameters (between 20 to 40nm) with more unclear
boundaries (Fig. 1b). This is because the conjugation of
FITC decreases the surface charge density of PAMAM
dendrimer and also the electrical attraction between
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PAMAM dendrimer (positive charge) and mica surface
(negative charge). Thus, the dendrimer branches can
relatively easily interpenetrate each other dendrimer
molecules, establish intermolecular interactions and cause
plate and more flat like films.

Figure 1: Tapping mode AFM images of a) G4 and b) G4
PAMAM -FITC dendrimers on mica surface.

3.2 The Cytotoxicity of G4 and G4 PAMAM-
FITC Dendrimers on HaCaT Cells

The effects of G4 PAMAM and G4 PAMAM-FITC
dendrimers on the viability of HaCaT cells were studied. As
shown in Fig.2, G4 PAMAM and G4 PAMAM-FITC
dendrimer had no conspicuous toxic effects on HaCaT cells
after 48h of incubation, which means the FITC conjugation
does not cause additional cell toxicity on HaCaT cells. Thus,
the G4 PAMAM-FITC is reasonably designed as a probe
for monitoring dendrimer uptake.
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Figure 2: Effects of G4 PAMAM and G4 PAMAM-FITC
dendrimers on the viability of HaCaT cells.

3.3 Cellular Uptake of G4 PAMAM-FITC

To quantify the uptake of G4 PAMAM-FITC by HaCaT
cells, we carried out the flow cytometry studies. Cellular
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content of the G4 PAMAM-FITC was determined by the
fluorescence intensity of FITC after incubating with HaCaT
cells at different time points (Fig. 3). Flow cytometry
results confirmed the observation of confocal microscopy
(data not shown) that a time-dependent increase of G4
PAMAM-FITC uptake by HaCaT cells. After 48h of
incubation, there was a 19.7-fold increase of the
fluorescence intensity as compared with that of 30 min
incubation.
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Figure 3: Flow cytometry study of G4 PAMAM-FITC
uptake by HaCaT cells.

3.4 Time-Course Study of Intracellular
Trafficking of G4 PAMAM-FITC

Although it is accepted that cellular uptake of
polycations occurs by endocytosis, little is known about the
intracellular distribution and trafficking of PAMAM
dendrimers. In this study, the subcellular localization of G4
PAMAM-FITC was examined by dual-staining with
fluorescent organelle probes. Fig. 4 showed the results of
pulse-chase study of G4 PAMAM-FITC in HaCaT cells.
The representative merged images of G4 PAMAM-FITC
and organelle-specific (lysosome, mitochondria, and Golgi
apparatus) dyes were shown in Fig. 4-;.,;. Co-localization
of G4 PAMAM-FITC with the respective cytoplasmic
organelle-selective dye is indicated by yellow color. Blue
fluorescence ER probe was chosen because there is no other
commercialized ER-Tracker™ available. The confocal
micrographs of G4 PAMAM-FITC and ER probe were
shown in Flg 4-22N28.

It seems that G4 PAMAM-FITC adhered to the cell
membrane surface via electrostatic interaction. At 30min
chase, the fluorescence of G4 PAMAM-FITC was not
observed in the cytosol (Fig. 4-1, 4-8, 4-15 and 4-22). The
fluorescence signal of G4 PAMAM-FITC was vaguely
visualized without co-localization with any organelle probe
at 1h chase, which stands for the beginning of endocytosis
(Fig. 4-2, 4-9, 4-16 and 4-23). The fluorescence signal was
partially co-localized with LysoTracker® after the
movement of G4 PAMAM-FITC from endosome to
lysosome at 3h chase. A significant co-localization of G4
PAMAM-FITC and LysoTracker® can be observed

between 6h and 12h chase (Fig. 4-4, 4-5), which means
more G4 PAMAM-FITC were processed into the
lysosomes. Intriguingly, at 24h chase, the co-localization of
G4 PAMAM-FITC and LysoTracker® decreased (Fig. 4-6)
while some co-localization of G4 PAMAM-FITC and
MitoTracker™ was observed (Fig. 4-13). It seems that the
G4 PAMAM-FITC was released from the lysosome and
translocated to the mitochondria at this time point. At 48h
chase, most of the G4 PAMAM-FITC entered the
lysosomes (Fig. 4-7). However, there was still some co-
localization of G4 PAMAM-FITC and MitoTracker® at this
time point. In addition, some faint fluorescence signal of
G4 PAMAM-FITC was observed in the Golgi apparatus.
The fluorescence topographic profiles recorded after cells
dual-labeled with G4 PAMAM-FITC and ER probe
revealed no co-localization at all time points. Consistent
with our prior observation, the fluorescence distribution of
G4 PAMAM-FITC was pure cytoplasmic with no obvious
fluorescence in the nucleus.

According to our results, G4 PAMAM-FITC adhered to
the cell membrane surface at 30min, became visible within
the cells at 1h, began to enter the lysosome at 3h,
accumulated and increased in the lysosome from 6h to 12h,
partially translocated to mitochondrial at 24h, and then
accumulated in the lysosome at 48h.

It has been demonstrated that the dendrimer/DNA
complex uptake is proceeded via the non-specific endocytic
pathway [6]. The electrostatic interactions between the
dendrimer/DNA complex and cell membrane were very
important for high efficiency transfection. It has been
postulated that branched cationic polymer has a high buffer
capacity, owing to protonable amine group, and that
enables dendrimer to act as a weak base and possesses
resistance by acidification within the endosome/lysosome.
The pH reduction within endosome/lysosome might lead
the cationic polymer to swell, thus disrupting the membrane
barrier of the organelle and promoting DNA or complex
release to the cytosol. This model of “proton sponge effect”
for cationic polymer was proposed by Kichler et al. [7].
However, the intracellular fate of PAMAM dendrimer
alone may be a different story from the dendrimer/DNA
complex. We observed that G4 PAMAM-FITC was
endocytosed via the classical endosome/lysosome pathway.
Strikingly, small amount of the dendrimers shuttled
between mitochondria and lysosomes at later time points.
Based on the current understanding of the intracellular fate
of PAMAM dnedrimers, the release of G4 PAMAM-FITC
from lysosome to the cytosol might occur by the osmotic
swelling (the “proton sponge effect” hypothesis). However,
the mechanism by which G4 PAMAM-FITC shuttled
between lysosomes and mitochondria remains unclear.
Further investigations are in process at our lab to clarify
this issue.

Co-localization of G4 PAMAM-FITC and Golgi probe
was also observed in this study that may be due to the
intimate relations between the endosome, lysosome, and
Golgi apparatus. It is known that the endocytosed materials
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will meet the hydrolases, which are delivered from the
Golgi apparatus, in the late endosomes. It is proposed that
mature lysosomes form from the late endosomes by a
gradual maturation process. During this process endosomal
membrane proteins are selectively retrieved from the
developing lysosome by transport vesicles that deliver these
proteins back to endosome or the trans Golgi network
(TGN). Therefore, G4 PAMAM-FITC was first
endocytosed and initially delivered in vesicles to early
endosomes, then passed on into late endosomes, where G4
PAMAM-FITC met hydrolases delivered from Golgi
apparatus. The late endosomes then fused with lysosomes,
and the transport vesicles delivered proteins and G4
PAMAM-FITC back to endosome or the TGN. This may
explain the fluorescence signals of G4 PAMAM-FITC
observed in the Golgi apparatus.

It is reported that the G5 dendrimer/oligonucleotides
complex will enter the nuclei without dissociation [8]. In
contrast, the results of this study demonstrated that G4
PAMAM-FITC can not enter the cell nuclei. Therefore, the
entry of the PAMAM dendrimer into the nuclei might occur
under the situation when the dendrimers were associated
with DNA. On the contrary, as reported by Godbey et al.,
the endocytosed polyethylenimine (PEI), whether
administered with or without DNA, undergoes nuclear
localization [9]. The intracellular fate of another
nanoparticle, polymeric micelle, is totally different from the
cationic polymers. Savic et al. demonstrated the subcellular
distribution of polymeric micelle with major localization in

mitochondria and Golgi apparatus after 24h incubation [10].

In addition to the mitochondria and Golgi apparatus, the
micelles could also be observed in the lysosome and ER.
These differences may be due to the different types of
nanomaterials. However, the different intracellular fates
between these two cationic polymers, PAMAM and PEI,
are very interesting. Further studies about the effects of
DNA on the nuclear translocation of dendrimers are still
undergoing at our lab.
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Figure 4: Intracellular trafficking of G4 PAMAM-FITC
dendrimer in HaCaT cells
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4 CONCLUSION

Interest in the surface engineering of nanomaterials has
increased significantly in recent years. The nanomaterial
surface can be modified for targeting, imaging and drug or
gene delivery to develop the multi-functional nanodevice.
The purpose of this study is to elucidate the subcellular
distribution and intracellular trafficking of PAMAM
dendrimer. We have, for the first time, delineated the
detailed subcellular distribution and intracellular trafficking
of PAMAM dendrimer using time-course studies. The most
striking finding is that although G4 PAMAM-FITC was
endocytosed following the endosome/lysosome pathway,
certain amounts of the dendrimers shuttled between
lysosomes and mitochondria at later time points. Small
amount of the dendrimers was observed in the Golgi
apparatus, also at later time points, but there was no ER or
nuclear localization of the dendrimers. The results of this
study not only provide us invaluable information in
dendrimer biology but also have great impact to the future
development of more precise dendrimer-drug or -gene
delivery systems.
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