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ABSTRACT

This paper first gives an introduction to parameter-
ized computation and complexity theory, a new subfield
in theoretical computer science. Then it presents a sum-
mary of its applications to addressing some important
NP-hard problems in computational biology. Specifi-
cally, we can design efficient parameterized algorithms
and also drive computational lower bounds for the pa-
rameterized algorithms and approximation algorithms
of computational biological problems.
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1 INTRODUCTION TO
PARAMETERIZED COMPLEXITY

According to the theory of NP-completeness, many
problems that have important real-world applications
in life science are NP-hard. This excludes the possibil-
ity of solving them in polynomial time unless P=NP.
For example, the problems of cleaning up data, multiple
sequence alignment, closest string and maximum com-
mon substructure, are all famous NP-hard problems in
computational biology [6], [14], [25], [31]. A number of
approaches have been proposed in dealing with these
NP-hard problems. For example, the highly acclaimed
approximation approach [3] tries to come up with a good
enough solution in polynomial time instead of an opti-
mal solution for an NP-hard optimization problem [11],
[12], [24], [26].

The theory of parameterized computation [14] is a
newly developed approach introduced to address NP-
hard problems with small parameters. It tries to give
exact algorithms for an NP-hard problem when its nat-
ural parameter is small (even if the problem size is big).
Problems are considered fixed-parameter tractable (in
the class FPT) if they can be solved in time O(f(k)nc),
where n is the problem size, k is the parameter, f is a
recursive function, and c is a constant. For a problem
in the class FPT, researchers try to come up with more
efficient parameterized algorithms. There are many ef-
fective techniques for parameterized algorithm design-
ing, such as the methods of bounded search tree and

reduction to a problem kernel. For example, the ver-
tex cover problem, a well-known NP-hard problem, is
fixed-parameter tractable (in FPT).

vertex cover problem: given a graph G
and an integer k, determine if G has a vertex
cover C of k vertices, i.e., a subset C of k
vertices in G such that every edge in G has
at least one end in C. Here the parameter is
k.

Given a graph of n vertices, there is a parameterized
algorithm that can solve the vertex cover problem in
time O(kn + 1.286k) [10].

Accompanying the work on designing efficient and
practical parameterized algorithms, a theory of param-
eter intractability is developed. In parameterized com-
plexity, to classify fixed-parameter intractable problems,
a hierarchy, the W -hierarchy

⋃
t≥0 W [t], where W [t] ⊆

W [t + 1] for all t ≥ 0, has been introduced, in which
the 0-th level W [0] is the class FPT. The hardness and
completeness have been defined for each level W [i] of
the W -hierarchy for i ≥ 1, and a large number of W [i]-
hard parameterized problems have been identified [14].
For example, the clique problem is W [1]-hard.

clique problem: given a graph G and an
integer k, determine if G has a clique C of
k vertices, i.e., a subset C of k vertices in G
such that there is an edge in G between any
two of these k vertices, i.e., the k vertices
induce a complete subgraph of G. Here the
parameter is k.

The clique problem is also a well-known NP-hard
problem [17]. The clique problem can be solved in
time O(nk), based on the enumeration of all the vertex
subsets of size k for a given graph with n vertices.

Now it has become commonly accepted that no W [1]-
hard (and W [i]-hard, i > 1) problem can be solved in
time f(k)nO(1) for any function f (i.e., W [1] �= FPT).
W [1]-hardness has served as the hypothesis for fixed-
parameter intractability. Examples include a recent re-
sult by Papadimitriou and Yannakakis [28], showing that
the database query evaluation problem is W [1]-
hard. This provides strong evidence that the problem
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cannot be solved by an algorithm whose running time is
of the form f(k)nO(1), thus excluding the possibility of a
practical algorithm for the problem even if the parame-
ter k (the size of the query) is small as in most practical
cases.

Research activities in parameterized computation have
demonstrated rich complexity structures and effective
algorithmic approaches. This research area has found
applications in computational biology, database systems,
networks, parallel computing, VLSI design and other
research areas. Please refer to [7], [13]–[15], [21], [28]
and the recently published special issue in Journal of
Computer and System Sciences (Volume 67, No.6, 2003,
Guest Editors: J. Chen and M. Fellows).

2 PARAMETERIZED ALGORITHMS
FOR COMPUTATIONAL
BIOLOGY PROBLEMS

In this section, we discuss efficient parameterized al-
gorithms for computational biology problems. As an ex-
ample, we illustrate the applications of the fixed-parameter
tractable vertex cover problem.

For parameterized algorithm design, there are two
basic methods. One of the basic methods is bounded
search tree. This method is based on the observation
that many problems can be solved by algorithms of
two steps: First the algorithm computes a search space
which is often an exponential-sized search tree; Then
the algorithm applies some efficient techniques on each
branch of the search tree. Based on the bounded search
tree method, an algorithm for the vertex cover prob-
lem of time O(2kn) was designed, where k is the param-
eter and n is the number of vertices of a given graph [14].
Another method is called reduction to a problem kernel.
The basic idea is to reduce an instance of a problem to
an equivalent instance of size bounded by some func-
tion of the parameter. By applying this method, the
algorithm for the vertex cover problem was further
improved to O(n + kk) [14].

Many researchers have worked on the parameterized
algorithms for the vertex cover problem. It is in-
teresting to review the research progress for the ver-
tex cover problem [14]. In 1988, Fellows gave an al-
gorithm of time O(2kn). In 1989, Buss described an
algorithm of time O(kn + 2kk2k+2). In 1992, Downey
et al. described an algorithm of time O(kn + 2kk2).
In 1996, Balasubramanian et al. gave an algorithm of
time O(kn+(4/3)kk2). In 2000, Niedermeier and Ross-
manith presented an algorithm of time O(kn + 1.292k).
After many rounds of improvement, the current best
algorithm for the vertex cover problem is of time
O(kn + 1.286k) due to the work of Chen et al. in 2001
[10].

Now we discuss the applications of the algorithms for

the vertex cover problem in solving computational
biology problems. First, we look at the data clean-
ing problem [14]: Given a set of experimental data,
there are some conflicts between them. The problem
asks to remove the least number of data to resolve all
the conflicts. This problem can be formulated as the
vertex cover problem as follows. We first build a graph,
in which each data is represented as a vertex and each
conflict between two data is represented as an edge be-
tween the two corresponding vertices. We can see that
the minimum vertex cover of the graph corresponds to
a set of data, the removing of which resolves all the
conflicts.

Another important computational biology problem is
multiple sequence alignment, which is usually per-
formed to fit one of the following scopes [29]: In order
to characterize protein families, identify shared regions
of homology in a multiple sequence alignment; Determi-
nation of the consensus sequence of several aligned se-
quences; Help prediction of the secondary and tertiary
structures of new sequences, and; Preliminary step in
molecular evolution analysis using phylogenetic meth-
ods for constructing phylogenetic trees.

The Computational Biochemistry Research Group at
the ETH Zürich has successfully applied algorithms for
the vertex cover problem to their research in mul-
tiple sequence alignments [32], [33], where the pa-
rameter value k, i.e., the number of sequences, can be
bounded by 60. Here the basic idea of is the same.
Based on the given multiple sequences, a graph is con-
structed where a vertex is built to correspond to a se-
quence, and an edge is built between two vertices, if
there is a conflict between the two corresponding se-
quences, that is, if the alignment of the two sequences
has a score lower than a certain threshold. Here the
goal is to remove the fewest possible sequences that will
eliminate all conflicts in the alignment. It can be seen
that the removing of the sequences corresponding to the
vertex cover of the graph will resolve all the conflicts.
As we know, the current best known parameterized al-
gorithm for the vertex cover problem runs in time
O(1.286k + kn) [10]. This algorithm has been imple-
mented and is quite practical. For example, by also ap-
plying parallel processing techniques, the algorithm can
solve problem instances with k ≥ 400 (e.g. k = 461) in
less than 1.5 hours [6].

Other research work on investigating efficient param-
eterized algorithm for computational biological prob-
lems, such as the closest string problem, the longest
common subsequence problem and the distinguish-
ing substring selection problem, can be found in
[1], [2], [18]–[20].
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3 PARAMETERIZED LOWER
BOUNDS FOR COMPUTATIONAL

BIOLOGY PROBLEMS

In the last section, we have discussed the applica-
tions of parameterized algorithms for solving computa-
tional biology problems. We will see in this section that
parameterized intractability also has interesting appli-
cations in addressing computational biology problems.
For some biological problems, we can show that no ef-
fort could lead to a better parameterized algorithm or
approximation algorithm.

Based on the W[1]-hardness of the clique algorithm,
computational intractability of problems in computa-
tional biology has been derived [4], [5], [16], [22], [27],
[30]. For example, in [30], the author point out that
“Unless an unlikely collapse in the parameterized hi-
erarchy occurs, this (This refers to the results proved
in [30] that the problems longest common subse-
quence and shortest common supersequence are
W [1]-hard) rules out the existence of exact algorithms
with running time f(k)nO(1) (i.e., exponential only in
k) for those problems. This does not mean that there
are no algorithms with much better asymptotic time-
complexity than the known O(nk) algorithms based on
dynamic programming, e.g., algorithms with running
time n

√
k are not deemed impossible by our results.”

Recent investigation has derived stronger computa-
tional lower bounds for well-known NP-hard parameter-
ized problems in [8], [9]. For example, although a trivial
enumeration can easily test in time O(nk) if a given
graph of n vertices has a clique of size k, it is proved
that unless an unlikely collapse occurs in parameterized
complexity theory, the problem is not solvable in time
f(k)no(k) for any function f . Under the same assump-
tion, it is shown that even if we restrict the parameter
values k to be of the order Θ(µ(n)) for any reasonable
function µ, no algorithm of running time no(k) can test
if a graph of n vertices has a clique of size k.

Based on the hardness of the clique problem, we
derive lower bound results for a number of computa-
tional biology problems [23]. One example is the mo-
tif finding problem, which has applications in finding
conserved regions in molecular biology, as well as ap-
plications in coding theory. A graph theoretical formu-
lation of the motif finding problem was proposed in
[34]. It reduces the motif finding problem to finding
a maximum clique in a k-partite graph. According to
the parameterized complexity theory, we can prove that
this problem formulation is W [1]-complete with respect
to the number of strings k as the parameter. We can
derive computational lower bounds of the parameterized
algorithms for this problem. We are working on the pa-
rameterized complexity of the problem with respect to
the maximum allowed Hamming distance d. The maxi-

mum allowed Hamming distance d is considered as the
value of the objective function in designing an approx-
imation scheme in [26]. To resolve the parameterized
complexity of this problem with respect to the parame-
ter d will answer the open problem posed in [16], [20].

Moreover, the hardness result has also offered a method
for deriving lower bounds on the running time of ap-
proximation algorithms for NP-hard combinatorial op-
timization problems in computational biology. The NP-
hard distinguishing substring selection problem
was studied in [9]. This problem has important appli-
cations in the genetic drug design, where the goal is to
find a gene sequence that is close to bad genes (the tar-
get) but far from all good genes (to avoid side-effects).
For the distinguishing substring selection prob-
lem, a polynomial time approximation scheme has been
recently developed [11], [12]. The approximation algo-
rithm runs in time O(mnO(1/ε6)), where m is the prob-
lem size, and n is total number of good and bad strings.
It was showed that this problem has no polynomial time
approximation schemes of running time f(1/ε)no(1/ε) for
any function f unless an unlikely collapse occurs in pa-
rameterized complexity theory [9]. The techniques can
also be extended to derive computational lower bounds
for PTAS algorithms for the longest common subse-
quence problem in computational biology. This seems
to have opened a new direction for the study of computa-
tional lower bounds on the approximability of NP-hard
optimization problems.

4 CONCLUSION

As we know, most computational biology problems
are NP-hard. In considering that many of them involve
small parameters, the newly developed research area,
parameterized computation, is one proper approach for
studying these NP-hard computational biology prob-
lems. We can design efficient parameterized algorithms
for practical use and also drive computational lower
bounds for the parameterized algorithms and approx-
imation algorithms of computational biological prob-
lems. In future, we would like to further explore the ap-
plications of parameterized computation and complexity
theory for other important problems in computational
biology.
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