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ABSTRACT 
 
Thermal cooling of biological tissues due to flow of 

blood in micro-capillaries is useful for several biomedical 
applications [1]-[4]. The objective of the present study is to 
develop a better qualitative and quantitative understanding 
of the thermal cooling due to interaction between the blood 
flow in capillaries and the tissue environment. Analytical 
expression for one-dimensional temperature distribution in 
biological tissue is reported [5] without considering the 
bloodstream cooling. In this paper, an analytical modeling 
is reported to determine the transient temperature 
distribution inside a tissue due to flow of blood. The contact 
resistance between the tissues is neglected. Using the 
continuum approach the tissues are modeled as a single 
body and localized tissue is treated as a semi-infinite body. 
Finally the expression for heat flux is determined based on 
the transient temperature distribution. 
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1 INTRODUCTION 
 
The significance of the thermal heat transfer can be 

realized from the fact that bioheat transfer process are 
encountered in different conditions like cancer 
hyperthermia, laser surgery, thermal comfort analysis, and 
tissue thermal parameter estimation [6]. The present work 
deals with determining an analytical expression for the 
steady-state and transient temperature distribution inside a 
tissue due to flow of blood around it. A linear profile for 
volumetric heat cooling inside the tissues is assumed. A 
second-order temperature profile is assumed taking into 
consideration the appropriate boundary conditions. First an 
expression for the extent of the cold wave travel or the 
penetration depth δ (t) is determined by solving the integral 
equation and thereafter this value is used to find the 
temperature profile. The equation related the steady and the 
transient temperature at any point inside the tissue with its 
thermal conductivity, density and the specific heat.   

 
2 PROBLEM DEFINED 

 
The flow of blood around the tissues has a transient 

effect on the thermal transport between its flow and the 

tissues. Figure 1 shows the transient problem in 
consideration. A linear volumetric cooling is assumed, 
represented by: 

 
= - W AT  
 
where A is a constant and T is the instantaneous 

temperature inside the tissue body and the negative sign 
signifies the cooling condition. Figure 1 shows the problem 
in concern. 

 

 
 

Figure 1: Transient Problem Conditions 
 

Applying the energy conservation principle we can 
write: 
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i.e. the storage rate is equal to the net difference 

between the inflow and the outflow heat flux. Now the 
storage rate can be expressed as: 
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where ρ, c and Ac represent the density, specific heat 

and the cross-section of the tissue and Ti is the initial 
temperature of the tissue. Here the integral limits signifies 
the extent of the heat wave travel. Let δ be the extent of 
heat wave travel inside the tissue. Since there is no heat 
wave travel after the point  δ  hence the above equation can 
be written as: 

 

( )
0

=       c i
dS c A T T dx
dt

δ

ρ −∫&  

NSTI-Nanotech 2005, www.nsti.org, ISBN 0-9767985-0-6  Vol. 1, 2005 89



 
 

Input heat flux can be written as: 
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k being the thermal conductivity of the tissue, and 

taking the negative sign of the cooling effect into account 
the output can be written as: 
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Now substituting the different values in the governing 

energy equation (1) and noting that the initial temperature is 
equal to 0, we get: 
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Now assuming a second degree polynomial for the 

temperature profile and using the boundary conditions as: 
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we get the temperature profile as: 
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Now substituting the temperature profile in Eq. (2) and 

solving the integral equation, we get the following solvable 
differential equation: 
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Now substituting δ2 = z and noting that z has two 

components, particular and homogeneous, the final solution 
takes the form: 
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where D is a constant. The value of D can be found out 

by applying the boundary condition: 
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Substituting the value of D in Eq. (3) and noting that δ2 

= z, we get the final expression for the heat wave travel 
inside the tissue as: 
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  and hence the final expression for the temperature 

profile for the transient condition of blood flow around the 
tissues is: 
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The heat flux associated with the above temperature 

distribution can be determined from the heat diffusion 
equation: 
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Substituting the temperature profile represented by Eq. 

(4) in Eq. (5), we get: 
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