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1. Introduction

Scaling of MOSFETs into nano-scale requires use of
ultra-thin gate oxide layer and high substrate doping
concentration in the substrate. This results in a high transverse
field. Such a strong interfacial field gives rise to the significant
quantization mechanical effects (QME) [1-2]. Traditionally,
the triangular well approximation has been widely used for
MOSFET compact modeling[1,3]. However, the real MOSFET
always operates in the inversion region where the potential in
the semiconductor retains one parabolic well distribution as
shown by the numerical analysis and theoretical prediction
[4,5]. In this case, the triangular well approximation leads to
large error in calculating both the inversion layer centriod and
the sub-band energy levels.

A novel compact model to predict the inversion-layer
centroid and the QME sub-band energy levels has been
developed in this paper based on a parabolic potential well
approximation. From the WKB method, a simplified coupled
solution of Poisson and Schrodinger equations is obtained.
Then, the analytical expressions of quantized sub-band energy
levels and the inversion layer centroid are derived and their
predictions show a good agreement with the numerical results.

2. Compact model derivation

The MOSFET with the uniformly doped substrate and
(100) oriented p-type silicon is considered here. Following the
semiconductor device physics, the semiconductor energy band
bending creates a potential well support by depletion charge
and inversion layer electrons. Since electrons present in this
well occupy a set of energy sub-bands, which distribution
energy and wave function should follow the Schrodinger
equation
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where *m is the mass tensor, ( )zV is the electrostatic

potential, and ijE and ijψ are energy eigenvalue of and wave

function, respectively, of jth sub-band in ith valley.
The potential ( )zV is defined with respect to the

potential at the interface and varies with the space charge due
to depletion of hole and, if present, also by the inversion layer
electrons. The potential can be calculated from Poisson
equation
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the potential at 0=z or semiconductor surface is defined to
be zero and the gradient is taken to be sF− , the electrical

field at the interface. Here aN represents the background
depletion charge density.

Although there are several ways to approach the numerical
solution of Schrodinger equation, we will look at the
WKB(Wentzel-Kramer-Brillouin) method of finding the
approximate eigenvalues. To solve explicitly Schordinger
equation, one important classical assumption, the effective mass
approximation (EMA), is firstly applied to de-coupe 3-D
Schordinger equation into 1-D case that describes the wave
function perpendicular to the interface, ( )zijψ , that constrains

the Bloch waves traveling parallel to the interface (x-y plane).
And then, the Schordinger Eq.(1) is solved approximately by the
use of WKB( Wentzel-Kramer-Brillouin) method. This
approach, which is quite accurate, is based on the Bohr theory of
quantization of action and is conceptually simple. The Bohr
theory postulated that for stable quantum states, the electron
motion must have quantized “ action”, defined as the integral of
the momentum over the orbit. In the case of vibration motion
bounded on the left conduct edge bottom and right eigenvalue
level, or the semiconductor surface inversion layer thickness,
which meaning the inversion layer centroid, the action is defined
by the integral of the momentum being those quantized
eigenvaue levels from WKB method.

In solving Poisson equation, a corrected parabolic
potential well approximation (CPPWA) is used, which
assuming that a parabolic potential well is always available
either in depletion or inversion states and the quantum effect of
non-zero inversion layer charge thickness does not change the
substrate depletion depth and charge, as shown in Fig.1. In
traditional parabolic potential well case, the surface field is
determined by the depletion charges. In CPPWA, the surface
field is determined by the combination of depletion charges
and inversion layer charges. As a result, the traditional surface
field is corrected by adding inversion charge effects so as to
result in an effective surface field. Such a treatment great
simplifies solving the Poisson equation. In the following
discussion, an effective surface field expression is followed in
order to avoid complex integral:

siinvBeff QQE εη /)( += (3)

where η is often treated as a constant, being 0.5 for
electrons and 0.3 for holes in mobility extraction and
characterization. In fact, this parameter has a quantum effect
characteristic, which will be discussed later.

Inversion charge centroid is commonly defined as

� �= ndzzndzzI / (4)
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This definition features the statistical meaning, it is,
however, very difficult in computing due to integral involving
infinite edge. In our treatment, a new physics based inversion
charge centroid definition, originally coming from WKB
method, which means the inversion layer centroid is a potential
well depth at which electron eigenvalue is equal to the
parabolic potential this depth corresponds to is used
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This new definition is easy determined and demonstrates
the quite same magnitude with the statistics definition to first
order approximation. More importantly, the definition
coincides well with the WKB method.

All assumptions above are demonstrated in Fig.1, where
classical parabolic well approximation, corrected parabolic
potential well approximation due to quantum effect and its
resulting in subband levels and corresponding inversion layer
centroids, and quantum effect contribution to surface potential
are all figured.

Considering a 1-Dimensional MOS capacitance case, in
general parabolic case, the electrostatic potential under the gate
can be written from the depletion approximation
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where z is the distance in cm of the semiconductor bulk form
the semiconductor surface.

Integrating (6) gives
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where maxd is the maximum depletion depth in the
semiconductor bulk of MOS, which is given
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and sE is surface maximum field, which is expressed as
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If we define the carrier energy ( ) ( )zexU φ−= , combining
Eqs.(7) and (8) gives
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Eqs. (8) gives the magnitude of the maximum electrostatic
potential
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where maxφ is the maximum surface potential without including
the effect of non-zero thickness of the inversion charges.

Since the inversion charge effect on the surface field
is added to that determined by the depletion charges, under
CPPWA case, an effective surface field effE as defined by

Sabnis and Clemens, which is the average transverse electrical

field in the inversion layer, is used replacing the surface field
determined by depletion charges in electrostatic potential and
carrier energy expressions for considering the effect of the
inversion charges
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where ( )z'φ and ( )zU / are the electrostatic potential and
carrier energy distribution including the effect of non-zero
thickness of inversion charges, respectively.

Eqs. (13) and (14) imply a parabolic potential well in
MOSFET’s surface layer, which being in contrast with the
previous triangular potential well, as shown in Fig.2. Many
numerical analyses revealed a parabolic potential well is more
realistic to the practical case of MOSFETs compared with a
triangular potential well approximation.

Comparing the classical depletion approximation and
CPPWA, it is easy found that the magnitude of the maximum
electrostatic potential of CDA slightly increases by

2
maxdQinη

due to adding the effect of the inversion charges,

which is just the quantum effect, as given by Eq.(13)
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Comparing Eq.(15) and the pioneering paper on influence of
the inversion layer centroid on the total band bending on a MOS
capacitor [7] gives
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This expression will be used to determine parameterη .
According to concept of WKB method, solving Eqs.(5) and

(14) gives the inversion layer centroid:
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The physical key of the quantum mechanical effects lies in
that energy levels of electrons present in the quantized form.
According to WKB method, the electron wave function in the
inversion layer can be expressed in the following way
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where A is a normalization constant and
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where h is Planck constant and P is the electron quantized
momentum.

Since assuming that the inversion electrons are localized in
the infinite inversion layer, which should imply that the electron
wave function at the semiconductor surface and the maximum
inversion layer vanishes, thus electron wave function is limited
only in the parabolic potential well under WKB approximation.
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the semiconductor surface to the maximum inversion layer,
namely, from zero to Iz .

After substituting Eq.(19) into this condition, the following
expression is obtained:
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where n is the quantum level number, n=1,2,3…6.
Substitution of Eqs. (17) and (19) to perform the integral of

Eq. (20) gives
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The expression is a transcendental equation that the
inversion electrons in silicon MOS surface layer satisfied. It is
evident that ijE is related with the quantum number n,

e.g., ( )nEEij = . It is very interesting that the inversion

thickness can be exactly determined from Eq. (17) as long as
sub-band energy levels are known. However, an analytical
solution of Eq. (21) is hardly to be found.

Generally, the quantized energy is always less than that in
the whole depletion region. In this case, assumption

max2
1

deEE effp ≤ can give a trial solution of Eq.(21). The use

of this condition simplifies the exponential part of Eq. (21) via
the Taylor expansion:
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Substitution of Eq. (22) into Eq.(21) gives
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Eqn. (23) is an analytical solution of the sub-band energy
levels of 2-D electrons in MOS surface layer with the corrected
parabolic potential well.

Combining Eqs.( 17 ) and (23) gives the final expression
of the inversion layer centroid
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Moreover, the parameter η is given by solving Eqs.(5)
and (24)
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3. Result and discussion

Fig.2 shows the difference between the triangular well
and the parabolic approximations. Fig.3 shows the QM sub-
band energy level comparisons between the result of the
triangular well and the parabolic approximation and the
numerical result [1, 7-8] for the substrate doping 1e17cm-3. It

is evident that the parabolic result is more close to the
numerical.

More interesting is that (24) can degrade into the
inversion layer centriod expression derived by the variation
method [6] if the Taylor expansion is used. The numerical
calculation has demonstrated existence of such multiple
inversion charge centroids. Fig.4 shows the comparison of the
inversion layer centroids of the different sub-band energy level
for the substrate doping concentration 1e18 cm-3. It is found
the higher of the sub-band energy level, the larger the
inversion layer centroid is. For device and circuit compact
modeling, an average inversion charge centroid can be
evaluated from this analytical model via the maserjian ruler of
the inversion charge centroid. The result comparison with the
numerical solution [5,9] is shown in Fig.5. Fig.5 also
demonstrates the effect of the different substrate doping
concentration on the inversion centroid, which indicates the
higher the substrate doping, the smaller the inversion centroid.

More importantly, this compact model predicts the
dependence of the inversion charge weight factor of (1) on the
effective field, as shown in Fig.6.

4. Conclusions

A compact model to predict the sub-band energy levels and
inversion charge centroid in MOS surface inversion layer has
been presented for the parabolic potential well approximation.
Based on coupled solution of Schrodinger equation and Poisson
equation from the WKB method, one transcendental equation of
sub-band energy level has been rigorously derived and then the
approximate analytical solutions for the subband energy levels
and inversion charge centroid have been obtained. Analytical
results are compared with the numerical result and good
agreement between the analytical and numerical is found.
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