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ABSTRACT

This paper describes the next generation BSIM model
for aggressively scaled CMOS technology. New features in
the model include more accurate non-charge-sheet based
physics, completely continuous current and derivatives, and
extendibility to non-traditional CMOS based devices
including SOI and double-gate MOSFETs.
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1 INTRODUCTION

Device models play a very important role in the
advancement of CMOS technology and they appear
ubiquitously from fabrication process development to IC
design and manufacturing. The standardization procedure
setup by EIA Compact Model Council (CMC)[1] helps the
semiconductor industry to reduce the effort in evaluating
models, and also provides directions for modeling
development. Since the standardization of BSIM3V3[2],
several high quality models like BSIM4 [3], SP2000 [4],
HiSIM [5], EKV[6], ACM][7], USIM[8] models have
emerged to meet the needs of advanced process and
applications.

With the continuous scaling of CMOS technology
following the ITRS roadmap, a number of the assumptions
in the development of these traditional models become less
valid, specifically, the charge-sheet approach ignoring the
vertical carrier distribution in the inversion layer. In
addition, a stronger interaction between design and
modeling exists as a result of layout dependent
characteristics that have been previously ignored. This is
particularly true at RF and microwave frequencies where
device performance such as f,, is a strong function of
layout.

To further cope with the reduced time in the
adoption of a new technology, there is need for a flexible
model architecture to allow circuit simulation together with
technology development, even Dbefore all physical
phenomena are fully understood. To address the needs in
modeling nano-CMOS, a new physical core and
architecture is proposed for the next generation BSIM
model. The model results in consistent, smooth and unified
I-V and C-V equations that are critical in predicting
distortion in analog and RF circuits. The non-charge-sheet

formulation also makes the model easily extendible to non-
classical CMOS devices like double-gate (DG) MOSFETs.

2 I-VMODEL FORMULATION

Accurate analytical modeling of devices in deep
submicron CMOS technologies requires the physical
incorporation of short-channel effects and poly-depletion,
quantum effect, halo doping, retrograde doping, etc. Based
on our previous work[9], SPP(Surface-Potential-Plus) is
now extending to take these effects into account as well as
consistent IV and CV models in quasi2D Poisson equation
solution. SPP introduces new concepts with the direct
charge calculation in terms of terminal voltage, which are
essential to the definition of normalized variables useful for
hand calculation. By adopting a physical description of the
inversion charge density and the particular structure of the
model, with the derivation of continuous expressions for the
MOS charges valid in all modes of operation, new deep-
submicron CMOS technology effects can be simply
integrated into this unified model framework, still keeping a
small number of parameters. SPP core model chooses
charge density rather than surface-potential as the state
variable, on the other hand, maintains good computation
efficiency and flexibility.

The band structure at the surface of a MOSFET is
shown in Fig. 1 indicating the surface potential and the
quasifermi potential. The relationship between charge,
surface potential and quasifermi potential results in drift
diffusion current being function of quasifermi potential:
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Following Pao-Sah’s gradual channel approach and quast
fermi potential, potential gradient equation can be derived:

dQ; do,—dv,
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And applying Gauss Law at Si-SiO; interface:
Qi +Qb :Cox(ng _Vfb _¢s) 3)

After eliminating the surface potential, inversion charge
area density can be expressed as (q=Qy/ ViCox, vV=V/V,):
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Integrating (1) from source to drain we can get the drain
current:

_ Wy {QSZ -0; (0 -0, (5)

0 Leff 2n0C{1X
Note that the drain aurrent is a result of the superposition of
the drift current (the Q2 terms) and the diffusion current (the
Q terms) as shown in Fig. 2.
Short channel effects are incorporated from the
quasi2D solution to Poisson equation yielding:
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which can be approximated by
r
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The source and drain charge can be expressed explicitly in
terms of the W-Lambert equation.
Poly-depletion effects and quantum effects can be

easily handled by using the n-factor and ¢g correction.

n,~1+

0
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The characteristics of the channel charge
distribution including polysilicon depletion and quantum
effect are shown in Fig. 3, indicating good agreement with
2-D and quantum numerical simulation results.

Velocity saturation, velocity overshoot and
ballistic transports are handled in a unified way using the
saturation charge concept with the expression:

stat = QS (8)
1+C, E.LIQ, +2C, V, I n)

The saturation drain current is given by the IdsO
expression with Qg replaced by Qgsi. With velocity
overshoot based on the Price’s hydrodynamic model (HD)
and source-end velocity limited ballistic transport (BT), the
unified drain current expression become:

L Lo )
{HCQ—Q‘J}[H (vXHD /vepr )25] '

ox ef] sat

where vggp is the velocity from the hydrodynamic model.
The model has also been extensively verified by
experimental data with gate lengths down to 0.125mm and
some of the results are shown in Fig. 4. The physical core
also gives correct behavior for analog sensitive parameters

such as gm/Id as shown in Fig. 5 with Goo continuity
facilitating higher order harmonic analysis.

3 CHARGE AND C-V MODEL
FORMULATION

The GV equations can be directly derived from
the charges calculated in the previous section resulting in a
consistent I-V and C-V model with all major physical
effects including poly-depletion, quantum effect, SCE,
retrograde doping implemented. @ The C-V model is
symmetric at bs=0V. The charge equation for current
continuity is given by:

2 2
QI(y)COXV;(J{COQ:V, +n] y(C%V +nj 7[—5)2;/; +njn] (10)

The source charge and drain charge are then given by:

0, WI{I——} x)dx and Qd_Wj x)dx

The capacitances can then calculated directly by
differentiating the charges:

CXY =5- aQX =5- 8QX an + aQX aQs (11)
oy oQ,; oVy 0Q, oVy
with @ =1 for X=Y and —1 otherwise. The behaviors of the

terminal charges and capacitances are shown in Fig. 6,
together with the result from a quantum simulator.

4 CONCLUSION

In this paper, the formulation of a modular BSIM
model is described. The model exhibits smooth derivaties
and is thus well suited for analog and RF applications. It
also utilizes a new modular architecture with many physical
effects decoupled. Advance features including layout
dependent mobility, consistent non-quasi-static effects can
also be incorporated. The new approach is expected to be
able to accelerate the adoption of the rapid evolving CMOS
technology and help to develop models together with the
technology progress.
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Fig. 1: The detail band diagram of a MOSFETs under strong
inversion, that used to formulation equation (1)-(3)
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Fig. 2: Verification of drift current in strong inversion and
diffusion current in subthreshold region as predicted by the
new core model
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Fig. 3: Inversion charge concentration with quantum
mechanical effects included as predicted by the model and
comparison with self-consistent quantum mechanical
simulator
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Fig. 4(a): L=10pm, W=10pm MOSFET characteristics
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Fig.4(e): L=0.25um, W=10um MOSFET characteristics
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Fig. 4(e): L=0.25um, W=10um MOSFET characteristics
Fig.4 Comparison of I-V curves of simulation and data.
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Fig. 5: The behavior of the normalized gm/IDS plot for a
long channel device
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