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ABSTRACT 
 

A potential-based drain current model is presented for 
nanoscale undoped-body symmetric double gate 
MOSFETs. It is based on a fully coherent physical 
description and consists of a single analytic equation that 
includes both drift and diffusion contributions. The 
derivation is completely rigorous and based on a procedure 
previously enunciated for long-channel bulk SOI 
MOSFETs. The resulting expression is a continuous 
description valid for all bias conditions, from subthreshold 
to strong inversion and from linear to saturation operation. 
The validity of the model has been ascertained by extensive 
comparison to exact numerical simulations. The results 
attest to the excellent accuracy of this formulation. 
 
Keywords: MOS compact modeling, Symmetric DG 
MOSFET, Undoped body MOS, Intrinsic channel, Drain 
current model. 
 

1  INTRODUCTION 
 

Double gate (DG) MOSFETs with undoped body 
(sometimes referred to as ‘‘intrinsic channel’’ MOSFETs) 
have become very attractive for scaling CMOS devices 
down to nanometer sizes [1]. These nanoscale devices 
permit the lessening of short-channel effects (SCEs) by 
means of an ultra thin body (UTB), instead of the usual 
high channel doping densities and gradients. The absence 
of dopant atoms in the channel reduces mobility 
degradation by eliminating impurity scattering and avoids 
random microscopic dopant fluctuations. Such advanced 
MOSFETs are being developed in several 3-D geometries 
[2, 3]. 

Highly accurate and physics based compact models 
which are at the same time computationally efficient are 
required for proper modeling of MOSFETs for VLSI circuit 
simulation. Explicit analytic models are highly desirable 
because they offer better computational efficiency than 
their numerical alternatives without loss of physical insight.  

Taur [4, 5] obtained a system of two equations to 
describe the electrostatic potential across the silicon film. A 
charge-based drain current model (designated as Surface-
Potential-Plus, SPP) was developed in 2004 by He [6] to 
avoid the numerical solution of the transcendental equation 
used in surface potential-based models. Recently a 

continuous description was derived by Taur [7] for DG 
MOSFETs directly from Pao-Sah’s integral [8]. 

We have proposed an explicit approximate analytic 
solution of the surface potential of undoped-body 
symmetric DG devices [9], which was an extension of our 
previously proposed Lambert-W function-based analytic 
solution for the surface potential of undoped-body single-
gate bulk devices [10]. Potential-based drain current 
models for the undoped-body symmetric DG MOSFET 
become more attractive with the advent of such analytic 
solutions. 

In what follows we present the derivation of a 
physically consistent potential-based description of the 
drain current of undoped-body symmetric DG MOSFET. It 
is completely rigorous and is based on our previously 
proposed procedure to describe the current of long-channel 
bulk SOI MOSFETs [11]. The present result resembles the 
classical Pierret-Shields MOSFET model [12,13] more than 
Taur’s [7] because it contains the source and drain 
potentials explicitly. 

This formulation should be understood as a core upon 
which complete compact models may be developed for 
these undoped-body symmetric DG devices. In that context, 
this drain current description does not intend to account for 
short-channel effects, carrier confinement energy 
quantization, interface roughness, ballistic-type transport, 
mobility degradation, etc.  
 

2 DESCRIPTION OF THE POTENTIALS 
 

In the undoped-body symmetric DG n-MOSFET, we 
define x as the direction across the channel thickness and y 
the direction along the channel. Here symmetric means that 
the two gates have the same work function, both gate 
oxides are of equal materials and thicknesses, and the same 
bias is applied to both gates.  

It is assumed that the quasi-Fermi level is constant 
along the x direction, and current flows in the y direction. 
The energy levels are referenced to the electron quasi-
Fermi level of the n+ source.  

Considering that for an n-MOSFET the contribution of 
holes may be neglected and assuming potentials ψ >>kT, 
the one-dimensional Poisson equation across the transverse 
direction x (body thickness) of this device, under the quasi-
equilibrium approximation, leads to the following two 
equations [4, 5]: 
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where VGF is the difference between the gate-to-source 
voltage and the flat-band voltage, β =q/kT is the inverse of 
the thermal voltage, ni is the intrinsic carrier density, ψS is 
potential at the surface (x= tSi/2), ψo is the potential 
extremum at the center of the silicon film (x=0), Co is the 
gate oxide capacitance per unit area, εS is the permittivity of 
the semiconductor, tSi is the semiconductor film thickness, 
V is the difference between electron and hole quasi-Fermi 
levels along the channel (channel voltage), equal to 0 at the 
source and to VDS at the drain.  

Equations (1) and (2) must be solved to obtain the 
surface potential, ψS , and the center-of-film potential 
extremum, ψo , both at the source, y=0, and at the drain, 
y=L, ends of the channel. The solution at the source end, 
with V=0, gives: ψS = ψS0 and ψo = ψo0 . Analogously, 
solving at the drain end with V=VDS produces: ψS = ψSL and 
ψo = ψoL . 
 

3 DRAIN CURRENT FORMULATION 
 

The drain current can be described following Pao and 
Sah’s idea that including both the drift and diffusion carrier 
transport components in the silicon film results in a current 
description with smooth transitions between operating 
regions. Under the approximation that the mobility is 
independent of position in the channel, the current may be 
expressed as [12, 13] 
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where µ is the effective electron mobility, W is the channel 
width, L is the effective channel length, and QI is the total 
(integrated in the transverse direction) inversion charge 
density inside the silicon film at a given location, y, along 
the channel defined by 
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where F is the electric field. 

Since n >> ni and there is no fixed charge in the 
undoped body, QI  can be taken as being the total 
semiconductor charge: 

( )ψε SGFossI
 VCFQ  −−== 22    .    (5) 

 
where FS is the electric field at the surface, and the “2” 
comes from the symmetry. 

An equivalent to Pao-Sah's equation for the SOI 
MOSFET may be obtained by substituting (4) into (3) 
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with  
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and the electric field in the semiconductor film is given by 
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is defined as an interaction factor representing the charge 
coupling between the two gates, following our previous 
formulation [11]. 

We now proceed to evaluate the partial derivative of (8) 
with respect to channel voltage, following the procedure 
developed by Pierret and Shields [12, 13]: 
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In the above equation we have written the total derivative 
dα/dV because α does not depend on ψ . Substituting (7) 
into (10) yields 
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Further substitution of (11) into (6) gives 
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4 EVALUATION OF THE INTEGRALS 

 
Separating for convenience the two terms in the 

integrand of the double integral in (12) into two integrals, I1 
and I2, such that I=I1 - I2. The first integral may be 
integrated to yield 
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where α0 and αL represent the values of the coupling 
coefficient α evaluated at the source and at drain ends, 
respectively. Next we proceed to calculate the integral I2, 
defined by 
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Following Pierret and Shields’ ideas [12] for the bulk 

device, we note that the region of integration falls between 
ψS and ψo, from V=0 to V=VDS . Integral I2 may be further 
broken up into four integrals: 
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where ψm is any value less than ψo0 and its exact value is 
not important. Since the first and the third terms in the 
above equation have both constant limits of integration, the 
order of integration may be inverted, yielding 
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and 
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Changing the order of the integration in the second term 
of I2 in (15), 
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where Vf is the value of V at which the surface band 
bending is ψsf . Now integrating (18) produces 
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Also, the fourth term of I2, in (15) may be written as 
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where Vb is the value of V at which the surface band 
bending is ψo. Substituting (16),(17), (19), and (20) into 
(15) and reordering yields 
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Since ψ=ψsf for V=Vf , we recognize that F(ψ,V=Vf) = Fs. 
Therefore, the third term in (21) may be integrated using 
(5),  
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Analogously, integrating the fourth term of (21) yields 
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because the integrand is zero since it is the electric field at 
ψ=ψo. The integral in the second term of (21) may be 
evaluated using (8) and (9): 
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Similarly, the integral in the first term of (21) is: 
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Fig. 1 Effect of semiconductor film thickness on drain 
current at low drain voltage. 

 

    Some algebraic and trigonometric manipulations of (2), 
(5), (8), (9), (12), (13), (15), (17), (21)-(25), yield the 
following general current-voltage equation valid for all bias 
conditions [14]: 
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Figures 1 and 2 present the current, divided by µW/L, as 

a function of gate voltage for different values of tox and tSi, 
as calculated by the present analytic description. 
     It is important to point out that equation (26) is 
equivalent to equation (6) in [7], although the derivation 
was different.  
This equivalence can be established, after some algebraic 
manipulations, by noting that the beta parameter, βT , 
introduced in [7] is related to the charge coupling factor α  
between the two gates, defined in (9) and originally 
proposed by us [11],  by the following relation: 
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   Other approximate charge-based expressions for the 
current that have been proposed [6,15] may be related to 
the present formulation or to Taur’s expression [7]. 
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5 COMPARISON TO EXACT NUMERICAL 
SIMULATIONS 

 
The drain current in (26) is essentially exact within the 

bounds of its formulation and should produce the same 
results as direct numerical integration of the carrier charge 
along the channel indicated by (3). Figure 3 shows the 
drain current as a function of drain voltage, calculated by 
the present analytic description using (26), and exact results 
from numerical integration of the charge along the channel 
with increments of 1mV. The surface and center-of-film 
potentials needed in (26), and the carrier charge, used for 
the direct numerical integration, were calculated by 
iteratively solving (1) (2). The current is presented for 
convenience divided by µW/L, with the channel dimensions 
assumed to be much larger than its thickness. 

Comparison of the two results demonstrates the 
excellent accuracy of the present analytic description of the 
current. The resulting errors fall well below 10-17 for all 
operating regions, as shown in the plots at the bottom of 
Fig. 3. Considering that 20 digit precision was used in the 
numerical calculations, this represents a negligible error 
within computational accuracy.  

It should be noted that the surface and center-of-film 
potentials may be obtained using an approximate analytical 
solution [9], as already mentioned in the introduction. 
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Fig. 3 Drain current as a function of drain voltage for 

several values of gate voltage. Calculated using (26): solid 
lines. Direct numerical integration: symbols. 

 

6 ANALYSIS OF THE COMPONENTS 
 

In weak inversion, the first term in (26) is negligible. 
The third term is negative, but together with the second 
term gives a positive value approximated by: 
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The observed vertical displacement of the curves in Fig. 

1 corresponding to two film thickness is what is expected 
below threshold from the presence of tSi in (28).  

The strong inversion term can be obtained by 
subtracting the weak component from the total current: 

 
 I I I DwDDs −= .                                                           (29) 

 
Figure 4 presents normalized ID , IDw and IDs, separately 

plotted versus gate voltage in order to analyze their relative 
importance. We observe that the total current is 
approximated by IDs above threshold and by IDw below 
threshold.  

 
7 THRESHOLD 

 
According to the analysis of the preceding section, the 

intersection of the two current components shown in Fig. 4 
may be understood as the transition threshold from weak to 
strong inversion. 

Figure 5 shows this intersection numerically calculated 
as a function of gate oxide, tox , with silicon film 
thicknesses, tSi , as parameter. As it can be seen, the 
position of the intersection on the gate voltage axis, or 
apparent threshold voltage, decreases as tox and tSi increase. 
The reduction of threshold with increasing tox , which is 
typical of undoped body devices, is opposite to that of 
conventional highly doped body MOSFETs. This behavior 
was first predicted analytically by us for the case of the 
undoped body MOS capacitor [10] and recently confirmed 
by 2-D simulations [16]. 

In order to obtain this intersection analytically, we 
approximate the weak and the strong inversion currents for 
small VD. Below threshold the potential is essentially flat 
across the silicon film thickness because the drift current is 
negligible. Therefore,
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is the charge for an undoped bulk MOSFET, where W is 
the Lambert function [10]. Finally, equating (30) and (31) 
gives the approximate location of their intersection on the 
gate voltage axis: 
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     This approximate value from (33) decreases with both 
increasing tox and increasing tSi. It is also shown in Fig. 5 to 
compare it to the numerically calculated intersection of (28) 
and (29). 

8 CONCLUSIONS 
 

A derivation of nanoscale undoped-body symmetric 
double gate MOSFETs drain current has been presented. It 
is physical and fully consistent in the classical sense. It 
follows a Pierret and Shields' type formulation considering 
diffusion and drift transport. The description is in terms of 
surface and center-of-film potentials evaluated at the source 
and drain ends of the channel. 

The resulting expression is a single explicit analytic 
equation continuously valid for all bias conditions, from 
subthreshold to strong inversion and from linear to 
saturation operation, which makes it ideally suited as a core 
for full compact models. The negligible errors observed in 
extensive comparisons to exact numerical simulations 
demonstrate its excellent accuracy. 

VDS = 10 mV
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Fig. 5 Intersection of the two current components. From 
(28) and (29): lines. From (33): symbols. 
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