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ABSTRACT 
 
A new optimized threshold-voltage compact model is 

derived from the 1996-Sah four-component-current theory 
for long channel MOS field-effect transistors. The self-
consistent remote charge-neutrality boundary condition in 
the x-direction is used for the first time. Four independent 
optimization voltage parameters are proposed, one for each 
of the four current components (the parabolic space-charge-
limited drift current, the bulk-charge depressment of the 
drift current, the linear space-charge-limited diffusion 
current, and the bulk-charge enhancement of the diffusion 
current).  The parameter values are obtained by least-
squares-fit of each of the four current components from the 
compact model to that of the non-compact 4-component 
theory, from zero to the drain saturation voltage.  The 
deviation is less than 4% in the strong inversion range. 

 
Keywords: MOSFET, MOST, MOS transistor, compact 
model, space-charge-limited current, four-component 
theory, threshold voltage model. 
 
 

1 INTRODUCTION 
 

Design of MOS integrated circuits containing many 
transistors requires compact (simple and fast but still 
accurate) transistor models for use in the circuit simulator.  
The industrial standard MOS transistor compact models for 
the past decades have been the threshold-voltage model 
and its improvements to include diffusion current, mobility 
variations, hot carrier effects, and small geometry effects 
[1, 2].  Advanced compact models have been under recent 
development to meet new technologies and applications 
such as analog circuits and down-scaled and new transistor 
structures.  These advanced models follow two approaches 
[3]: the inversion charge compact models (or the 
traditionally known charge control modeling) and the 
general surface potential compact models.  This paper 
reports the initial test results of a new and optimized 
threshold-voltage compact model which is derived from the 
recently proposed four-component drain-current theory 
1996-Sah [4,5,6] using the industrial standard bench-mark, 
the double-integral 1966-Pao-Sah [7], as the reference. 

  
2 THE FOUR-COMPONENT MODEL 
 

2.1 The 4-Component Formula 

The 1996-Sah 4-component drain current formula for 
long-channel MOS transistors was given by [4, 5, 6]:  
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Here QP(0,y)=∫q(PB-P)dx is the bulk charge. V(0,y) is the 
surface potential at the source V(0,y=0)=VS0 or at the drain 
V(0,y=L)=VSL.  The two terms of the first line in (1) are the 
parabolic space-charge-limited drift current; the second 
line, the bulk-charge depressment of the drift current; the 
third line, the linear space-charge-limited diffusion current; 
the fourth line, the bulk-charge enhancement of the 
diffusion current; the last two lines are short-channel and 2-
D effects, and are neglected in this long-channel analysis. 

 
2.2 Exact Iteration Algorithm for Surface 
Potential Computation 

In order to evaluate the 4 components in (1), surface 
potential must be computed at each given gate voltage VGB. 
In order to contrast the 4 components computed from the 
proposed compact model, we shall call the non-compact 4 
components from [4, 5, 6] as the “exact” 4 components for 
the rest of this paper within the context of 1-D model.  The 
dependence of the surface potential on the applied gate 
voltage is obtained from two implicit equations, both from 
integrating the Poison equation, one along the x-axis to give 
the Gauss Law, and the second, also along the x-axis but by 
quadrature to give the x-component of the electric field that 
appears in the Gauss Law.  Assumptions are made to enable 
the two x-directed integrations including no recombination, 
no hole current, and electron current confined in the y-
direction in order to give the x-independent electron and 
hole electrochemical or quasi-Fermi potentials (normalized 
to kT/q) UP(x,y) = UP(y) and UN(x,y) = UN(y) [8].  The 
remote boundary conditions at x = ∞ are: zero potential 
reference, zero x-component electric field, and the self-
consistent or “exact” charge neutrality condition [9], 
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which is used for the first time in MOST analysis here and 
also by Zhou, et. al. [10].  This correct remote charge 
neutrality boundary condition was first arrived at 
empirically by McAndrew [11] without considering 
explicitly charge-neutrality.  The minority carriers must be 
included to give the physical-real result at flatband that 
avoids the imaginary electric field as observed by recent 
authors [11,12,13] who used the not-self-consistent 1965-
Sah-Pao [8] (also used 1966-Pao-Sah [7]) formula. The 
self-consistent x-independent electron and hole quasi-Fermi 
potentials are given by:  
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Here PIM = PAA − NDD is the space-constant net p-type 
impurity concentration, UPN = UPN(x,y) = UPN(y) = voltage 
applied to the p+Drain UPN(y=L)=UDB or to the p+Source 
UPN(y=0)=USB relative to n-Base of pMOST.  (Negative 
sign for nMOST: UPN(y=L)=−UDB and UPN(y=0)=−USB) 

The exact fast convergent iteration formulas for p-Base 
to obtain the surface potential US at a given UGX or UGB are: 
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3 OPTIMIZED COMPACT MODEL 
 

3.1 Bulk Charge Approximation 

We note that the two bulk charge terms in the four exact 
components in (1) are double (dxdy) and single (dx) 
integrals which must be computed numerically. For 
compact modeling, these two integrals must be reduced to 
analytical forms.  For the 1965-Sah-Pao analyses [8] Sah 
derived an analytical approximation to the bulk charge 
integral QP(0,y) = ∫q(PB-P)dx by breaking up the surface 

space-charge region into three layers.  In addition, Sah [8] 
obtained the three bulk charge terms as function of quasi-
Fermi potential difference UPN rather than surface potential 
V(0, y) = VS(y), a point missed by most later authors. 
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The major contribution comes from the first term in (8), 
which is from the uncompensated and ionized impurities in 
the depletion layer at the SiO2/Si interface. 

Equation (8) suggests that an effective surface potential 
Ψ can be defined as follows to enable analytical evaluation 
of the single and double integrals: 

Ψ(0,y) = 2VF + Vθ(y) − VPN (0,y)  (9a) 
)y,0(qP2)y,0(Q SIMP Ψε=                 (9b) 

where Vθ(y) is the optimization potential. This is just the 
linear approximation in the inversion charge model first 
employed in 1965-Sah-Pao [8] and described by Brews in 
his exposition of the 1978-Brews charge sheet model [14].  

 
3.2 Surface Potential Bulk Charge Model 

Although effective surface potential Ψ(0,y) has no 
explicit relationship with the surface potential VS or V(0,y), 
we will approximate Ψ(0,y) by VS.  Then, (9b) gives: 
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Using (10a) and (10b), then (1) gives [6] 
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3.3 Optimized Compact Model 

         Using Ψ(0,y)=V(0,y), (9a) and (11), (11) then give the 
compact model equation, (12), for the drain current with 
four optimization parameters, P1, P2, D1 and D2.  Their 
numerical values are determined by least squares fit to the 
corresponding terms in the non-compact 1996-Sah formula 
given in (1).  It is obvious that this is a threshold-voltage 
model with a peak in ID therefore it must be cut off at the 
drain current saturation point or at the peak, a deficiency, 
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but it includes the diffusion current terms which dominate 
in the subthreshold or weak inversion range of gate biases.  
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3.4 Extraction of 4 Optimization Parameters 

The four optimization parameters can be individually 
optimized over the device-operation domain (VG, VD, VS, 
VX≡VB) and the device-design domain (PIM, XOX), by least 
squares fit of each of the four compact-model components 
of (12) to the corresponding exact component of (1). 

After obtaining the values of the four optimization 
parameters over both operation and design domains by a 
one-time effort to create a two-dimensional table, the 
optimized compact model can then be used to fit 
experimental characteristics by variation of the two 
effective device design parameters (PIM, XOX).  Since XOX is 
usually determined accurately by C-V or other experimental 
methods, we are left with only one parameter to fit the 
experiment, which is PIM, the effective net impurity 
concentration in the basewell.  It is an electrical average 
over both x and y directions for ion implants. 
 

4 I-V CHARACTERISTICS 
 

Using the exact remote charge neutrality boundary 
condition (2), surface potentials are computed for a given 
gate voltage VGB and a range of VPN(y) from the source 
VPN(y=0) = −VSB to the drain VPN(y=L) = −VDB for the y-
integration using the fast convergent but still exact formulas 
(3) to (7b) over the accumulation, flatband, depletion and 
inversion ranges without negative number inside the square 
root near flatband observed by [10-13].  

  Then, the 1966-Pao-Sah double integral [7] and the 
exact 4-component formula (1) are computed and the %- 
deviation labeled CTS96XT is shown in Fig. 1  which also 
shows (CTS9604BJ [6]) the deviation of the drain current 
computed from the surface potential bulk charge non-
compact model formula (11).  These curves in Fig. 1 show 
that the 1996-Sah exact 4-component formula is about 1% 
smaller than the 1966-Pao-Sah double integral formula. The 
reasons have yet been delineated by us.  The curves in  
Fig. 1 also show this bulk charge model is about 3%-5% 
smaller than the 1966-Pao-Sah which is better than a 
number of other compact models. 

Figure 2 shows the drain current components and total 
drain current of both exact 4-component formula (labeled 
XT) and optimized compact model (labeled CM) at one 
device-design domain point (5x1017cm-3, 5.0nm) with the 
gate voltage VGX − VFB = 5.0V.  Figure 3 shows the 

corresponding percentage deviation of Fig. 2.  In most part 
of linear region VDS = (0 V, 2.6 V), the deviations of four 
components are less than 4%. 
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Figure1:  Percentage drain current deviation of exact 4-
componet formula (labeled CTS96XT) and surface 
potential bulk charge model (labeled CTS9604BJ) 

compared with Pao-Sah double integral. 
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Figure 2:  Output characteristics of 4 components (P1, P2, 
D1, D2) and total drain current from the exact 4-compact 
formula (XT) and the optimized compact model (CM). 
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Figure 3:  Drain current percentage deviation of the 
optimized compact model compared with the exact 4-

component formula versus the drain voltage. 
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Figure 4 shows the four optimization parameters P1, P2, 
D1, and D2, versus the gate voltage at the device-design 
domain point (5x1017 cm-3, 5.0nm).  It shows that 
optimization parameters P1 and D1 of the space-charge-
limited parabolic drift and linear diffusion components have 
weak dependences on gate voltage, while the two bulk-
charge-limited optimization parameters, P2 and D2, have 
strong dependences on gate voltage.  These are understood 
by comparing the two current equations, (11) and (12): 
(1) The gate voltage dependence of the four optimization 

parameters in (12) are expected since these parameters 
originated from the optimization potential Vθ in (9a) 
with an assumed linear interdependence of the surface 
potential and the quasi-Fermi potential difference.  

(2) On the space-charge-limited drift component, gate 
voltage dependence of surface potential in the strong 
inversion range is less than f(VGX) = VGX, thus the 
optimization parameter P1 is a weak function of  VGX. 

(3) On the space-charge-limited diffusion component, gate 
voltage dependences of the surface potentials at source 
and at drain cancel each other, thus optimization 
parameter D1 is a weak function of gate voltage. 

(4) Both bulk-charge-limited components, P2 and D2 are 
functions of gate voltage.  But in the optimized 
compact model they have no explicit gate voltage 
dependence, hence their gate voltage dependences are 
through the optimization parameters. 
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Figure 4:   The four optimization parameters extracted over 
drain voltage range (0, VDSAT) versus gate voltage. 

5 CONCLUSION 
 
From the 1996-Sah exact 4-component formula, two 

types of compact models are derived.  One was the surface 
potential bulk-charge model, CTS9604BJ [6].  The second, 
treated in this paper, is a threshold-voltage bulk-charge 
model, or the optimized compact model, CTS9604BJ-CM.  
An exact iteration algorithm for computing the surface 
potential at a given gate voltage is described, using the 
exact remote charge-neutrality boundary condition for the 
first time.  Compared with 1966-Pao-Sah double integral, 

the 1996-Sah 4-component formula shows about 1% 
deviation with unidentified reasons. 

For this optimized threshold-voltage compact model, 
CTS9604BJ-CM, the deviations are within 4% of those of 
the exact 1996-Sah 4-component formula CTS96XT.  The 
gate voltage dependences of four optimization parameters 
are discussed which are critical for modeling subthreshold 
range of the drain current, which will be reported. 
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