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ABSTRACT 

With the recent advances in nano-scale science and 
engineering, materials containing reinforcement with 
superior mechanical properties can be found in many 
advanced products.  The accurate prediction of the 
mechanical properties of this class of composite materials is 
important to ensure the reliability of the products.  
Characterization methods based contact probe such as 
nano-indentation and scratch tests have been developed in 
recent years to measure the mechanical properties of the 
new class of nano materials.  This paper presents a 
constitutive modeling framework for predicting the 
mechanical properties of nano-particle reinforced 
composite materials.  The formulation directly considers 
the effects of inter-nano-particle interaction and performs a 
statistical averaging to the solution of the problem of two-
nano-particle interaction.  Final constitutive equations are 
obtained in analytical closed form with no additional 
material parameters.  The predictions from the proposed 
constitutive model are compared with experimental 
measurement from nanoindentation tests.  This constitutive 
model for nano-paticle reinforced composites can be used 
to determine the volume concentration of the reinforcing 
nano-particles in nano-indentation test. 
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1 INTRODUCTION

Composite materials containing reinforcement with 
superior strength manufactured with nanotechnology have 
emerged in many applications.  For example, carbon 
nanotubes have been utilized in field emission display as 
indicated in Qian et al [1].  Thin coatings with nano-
particle-filled sol-gel have also become popular in many 
advanced products including the protective topcoat of 
recording films in optical storage disks (Malzbender et al. 
[2]).  For the reliability of these advanced products, 
accurate predictions of the mechanical properties of this 
class of composite materials are important. 

In many existing constitutive models for composite 
materials, the effects of interaction among reinforcing 

elements have been neglected mostly due to the following 
two reasons.  First, the difference of the mechanical 
strength between the reinforcement and the original matrix 
material may not be too large.  Secondly, the volume 
concentration of the reinforcement may not be high.  With 
the advance in modern nanotechnology, these two 
assumptions are no longer valid because some materials 
produced with nano-scale material engineering can have 
superior mechanical strength than traditional materials.  In 
addition, the size of the reinforcement material can be made 
very small with nano-scale material engineering and thus 
greatly increase the homogeneity of the final composite 
material.  This allows the volume concentration of the 
reinforcement to be increased to achieve much better 
overall mechanical properties.   

This paper presents a material modeling framework for 
composites with nano-particles.  The major advantage of 
the proposed model is that the effects of inter-nano-paticle 
interaction are captured into the constitutive model through 
statistical averaging on the solution of a two-particle 
interaction problem.  Analytical closed-form formulations 
can be derived to predict the mechanical properties of nano-
particle reinforced composites.  The constitutive equations 
are expressed in terms of the volume concentration of the 
nano-particles and the material properties of the original 
matrix material and the reinforcing material.  No additional 
material parameter needs to be introduced. 

2 AVERAGE FIELDS THEORY 

The determination of the exact internal local stress or 
strain field in a composite system is in general formidable 
due to the high degree of complexity of the arbitrary 
geometry and concentration of the reinforcing material.  In 
many applications, it is sufficient to have the average of the 
field concerned.  A method based on the averages of stress 
and strain fields was introduced by Hill [3] to describe the 
effective properties of composite materials.   

In the average field theory, a concentration factor is 
introduced to represent the relationship between the local 
field and the average of the global field.  For example, the 
stress at any local point for a specific material phase is 
related to the average stress for the global composite system 
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via the stress concentration factor.  If only the average of 
the local stress field is required, upon averaging over the 
local material phase, we have the following relationship 

P :  (1) 

where  represents the stress tensor, the fourth rank tensor 
P  is the volume averaged stress concentration factor 

tensor for phase , an over-bar represents the volume 
average of the corresponding quantity, and the subscript 
denotes the material phase.  Similar definition is made for 
the strain field   

Q :  (2) 

in which  represents the strain tensor and Q  is the 

volume averaged strain concentration factor tensor for 
phase .

From elasticity theory, the elastic stiffness and 
compliance tensors, C  and D , respectively, for material 

phase  relate the local average stress and strain fields 
according to the following two equations 

C :  (3) 

D :  (4) 

Similarly, the macroscopic elastic properties can be 
expressed by the following equations through the global 
elastic moduli 

C :*  (5) 

D :*  (6) 

Subscripts 0, 1, and * denotes the matrix, nano-particle, and 
overall composite material, respectively.  Based on the 
definitions in Equations (1)-(6), the global effective elastic 
moduli are expressed in terms of the volume fractions, 
elastic moduli of the constituent phases, and the 
concentration factor tensors as shown in the following two 
equations 

QCCCC*  (7) 

PDDDD*  (8) 

From Equations (7) and (8), the global effective elastic 
moduli for a two-phase composite system can be calculated 
provided that any one of stress or strain concentration factor 
tensors is available.  

3 INTERACTION OF TWO NANO-

PARTICLES 

For the simplicity of presentation and mathematical 
operation, we assume that the material properties for both 
the matrix phase and the particle phase are isotropic and the 
loading at any local material point remains within the 
elastic limit.  However, the framework that is presented in 
this paper is valid for the general composite system with 
any arbitrary material property for the constituent phase.  It 
is further assumed that the particles do not intersect each 
other and the material properties of both phases remain 
unchanged for the loading considered.   

Extending from Mura [4] , when applying the Eshelby’s 
Equivalence Principle to the inclusion problem without 
considering the effects of inter-particle interaction, the 
equation for determining the unknown eigenstrain, which 
has been proved to be constant throughout the entire 
spherical region, can be written as 

000 :: **
SA  (9) 

where 

0
1

0 )( 1 CCCA  (10) 

in which 0C  and 1C are the stiffness tensor for the matrix 

and inclusion phase, respectively.  Tensor product is 

denoted by BA .  In Equation (9), S  is the Eshelby’s 
tensor for a spherical inclusion and is defined as 

x'x'xGS d)( , x  (11) 

where the elasticity Green’s function tensor x'xG  is 

defined by the following equation 

x'x'x'xGx
* d)(:)()(  (12) 

in which )(x  denotes the strain tensor at location x ,

)(x*  is the tensor of eigenstrain, and )(x*0  represents the 

eigenstrain tensor for the non-interacting particles.  The 

explicit form for the tensor components of S  can be found 
in Mura [4] for the spherical inclusion considered in the 
present study.  Taking into account the effects of inter-
particle interaction, the integral equation governing the 
distributed eigenstrain can be expressed as 

ji

dd x'x'x'xGx'x'x'xGxA
0* )(:)()(:)()(:  (13) 
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In the case that we are considering, many equal-sized 
spherical particles are assumed to distribute randomly 
among an elastic solid.  Based on the solution for Equation 
(13), which represents the effect of pair-wise interaction, 
and assuming that the distribution of the particles is 
uniform and no particle overlaps with each other, ensemble-
volume averaged eigenstrain perturbation in a particle can 
be written as 

*0* :  (14) 

where the components for the isotropic interaction tensor
 are defined as 

)(21 jkiljlikklijijkl  (15) 

in which ij is the Kronecker delta, 

00
2
0021 211

23

4
512

4

5
 (16) 

and

00
2
0022 211

23

3
5111

8

5

2

1
 (17) 

where 

01

0

01

0
00 110152  (18) 

and

01

0
00 115542  (19) 

In Equations (16) and (17), , , and  represent the 

Poisson ratio, bulk modulus, and shear modulus, 
respectively, for the corresponding material phase which is 
denoted via the corresponding subscript and  denotes the 

volume fraction of the particles in the composite material 
under consideration.   

4 CONCENTRATION FACTORS 

With an additional averaging over the volume of the 
representative volume element, the equation relating the 

average strain , the uniform remote strain , and the 

average eigenstrain 
*
 can be expressed as: 

*
0

S :  (21) 

With Equations (8), (9) and (14), we get 

B
*

:  (22) 

where 

1
SSB  (23) 

Averaging the fundamental equation for the Eshelby’s 
equivalence principle: 

xxCxC :: 01  (24) 

the relationship between the local strain average and the 
eigenstrain average can be written as 

CC 1011 ::  (25) 

Further utilizing Equation (10), we arrive at 

A1 :  (26) 

then, with Equation (8), 

BA1 :  (27) 

Hence, upon comparing Equation (27) with Equation 
(2), the strain concentration factor tensor considering the 
effect of inter-particle interaction can be written as 

BAQ1  (28) 

and the corresponding stress concentration factor tensor can 
be derived in a similar fashion.  The explicit expression for 
the stress concentration factor tensor takes the following 
form: 

11
011 CBIBACP  (29) 

The tensor components for 1P  can be obtained by 

carrying out the lengthy tensor operation in Equation (29).  
The fourth rank tensor 1P  is found to be isotropic and its 

components are 

jkiljlikklijijkl ppP 211  (30) 

where 

21010

2101
21

23212023

23130
23 pp

 (31)
and

2001

201
2

572

115
p  (32) 

5 EFFECTIVE ELASTIC PROPERTIES 

As an example, the stress and strain concentration factor 
tensors derived in the previous section are employed to 
construct the effective elastic properties for particle-
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reinforced composites.  Through Equations (7) and (29), the 
effective elastic stiffness tensor incorporating the effect of 
inter-particle interaction reads 

1
SSAICC 0*  (43) 

Since the particles are assumed to distribute uniformly 
among the matrix material, the composite is isotropic.  The 
effective elastic property can be represented by the 
effective bulk modulus *  and the effective shear modulus 

*  can be explicitly written as 

210

210
0*

2311023

23130
1  (44) 

and

20

20
0*

544

130
1  (45) 

6 COMPARSON WITH EXPERIMENTAL 

RESULTS

In Malzbender et al. [2], nanoindentation tests were 
conducted to measure the mechanical properties of nano-
particle-filled sol-gel coatings on glass.  The material 
surface is indented with a small indentor loaded with a 
force.  Based on the depth of the indentation, mechanical 
properties of the thin coating can be calculated.  
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Figure 1: Effects of inter-nano-particle interaction. 

Figure 1 compares the experimental results from 
indentation tests reported in Malzbender et al. [2] with the 
prediction from the constitutive equations presented in this 
paper.  Nanoindentation has been conducted to measure the 
mechanical properties of alumina filled coating on glass.  
The solid curve in Figure 1 represents the mechanical 
properties predicted by Equations (44) and (45) including 
the effects of inter-nano-particle interaction.  The dashed 
curve in Figure 1 corresponds to the mechanical properties 

predicted by Equations (44) and (45) with neglected effects 
of inter-nano-particle interaction.  The difference in these 
two curves indicates that as the volume concentration of 
nano-particles increases, the effects of inter-nano-particle 
interaction become more important and cannot be 
neglected.  Figure 1 also suggests that the predictions with 
inter-nano-particle interaction effects are closer to the 
experimental measurements.  

7 CONCLUSIONS 

A constitutive modeling framework to predict the 
mechanical properties of nano-particle reinforced 
composite materials has been presented.  The predictions on 
mechanical properties from the current model have been 
compared with experimental data measured by 
nanoindentation tests.  The effects of inter-nano-particle 
interaction are significant and cannot be neglected 
especially when the volume concentration of the nano-
particles is high. 

The constitutive model presented in this paper has the 
potential of being used for numerical simulation based on 
finite element analysis to solve practical engineering 
problems involving composites reinforced with nano-
particles up to moderately-high volume concentration.  
During the constitutive modeling process presented in this 
paper, no additional material parameter has been 
introduced.  The mechanical properties are related to the 
volume concentration of the nano-particles.  This 
constitutive model provides a possible tool for the 
prediction of the volume concentration of nano-particles
based on the measurements from nano-indentation tests.  
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