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ABSTRACT

The motion of particle pairs in a Brownian ratchet
device is studied using Langevin simulations. A Lennard-
Jones interaction between the particles is added to a
standard spring-bead model. The effects of such inter-
action upon a recent model for Brownian motors [3] is
investigated, with emphasis on the steady-state current.
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1 INTRODUCTION

Eletrophoresis is a technique used to separate poly-
electrolyte strands with different lengths [1]. One of its
fields of application in nanotechnology is use in separa-
tion of DNA [2]. Clusters of particles can undergo net
transport on a potential energy that is externally driven
to fluctuate between several states in Brownian ratchet
device.

In [3], a model for coupled Brownian motors, inspired
by the motion of individual two-headed molecular mo-
tors on cytoskeletal filaments was proposed. The motors
were modelled as two elastically coupled Brownian par-
ticles, each moving in a flashing ratchet potential. With
a view to modelling ratchet-separation devices for DNA,
we examine in this paper the effect of a Lennard-Jones
interaction [4] between the particle pair, in addition to
the existing spring force.

Using Langevin simulations we obtain currents as a func-
tion of noise strength, the equilibrium separation of the
particles and the rate of switching between potentials.
The outline is as follows. In Sec. 2 we introduce the
Brownian ratchet mechanism. The model together with
type of potential is discussed in Sec. 3. The numerical
results are presented in Sec. 4.

2 BROWNIAN RATCHET

Noise induced transport has been recently become a
widely studied area [5]-[7]. Much effort has been made
to understand the dynamics of Brownian ratchets in the
presence of stochastic forcing. The fluctuations and a
broken symmetry are sufficient prerequisites for molec-
ular transport to occur.

Figure 1: A simple Brownian ratchet device. Particles,
with center at coordinate x, are subject to one of the
two-state flashing ratchet potential, constant potential,
W1 and an asymmetric saw-tooth potential, W5, which
switches periodically with period 7. The interaction be-
tween particles, that are at the distance r apart, is mod-
elled by the Lennard-Jones potential Uy ; , which has a
minimum at equilibrium distance a.

Hammond et al [8] described the development and use of
an integrated electrode array (IDEA) device for trans-
portation of DNA based on a Brownian ratchet mecha-
nism. The ratchet like potential is generated by apply-
ing a voltage difference to a series of pattern electrodes.
The traps vanish and the particles undergo Brownian
motion after the electrodes are discharged. When ap-
plying an ac electric field, because of the difference in
the electrophoretic mobilities it is possible to observe a
directional motion with shorter clusters moving faster
then longer ones. This allows a separation of polymers
with different lengths.

Material models of DNA frequently use elastic coupling
between neighboring particles [9]. In order to investigate
the effects of more realistic interaction between parti-
cles, we begin by adding a Lennard-Jones interaction to
the ratchet model for Brownian motors described in [3].

3 MODEL

We consider two overdamped Brownian particles cou-
pled through a spring of spring constant k& and equilib-
rium length a. Graphical representation of the model
is given in Figure 1. The excluded volume interaction
between two particles, that are at the distance r apart,
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Figure 2: Deterministic case: the current j vs an equi-
librium distance a for e = 0.1 and £k =0.8 .

is modelled by the Lennard-Jones potential:

wm-a((©)-C)) W

The potential of Eq. (1) is stiff for small distance r,

and for strength of interaction ¢ = 0 model would corre-
spond to the standard spring-bead model [3]. We choose
the value of parameter o such that the minimum of
Lennard-Jones potential is at the equilibrium distance,
eg o=a-2716,
Following [3], particles are subject to one of the two-
state flashing ratchet potential which switches periodi-
cally with period 7. W;(z)(j = 1,2) defines the poten-
tial in state j at point x. W7 is a flat potential and we
choose the following asymmetric potential Wa:

W2=U<%sin (27%1;) +%sin (%)), (2)

where U and L represent depth and period of potential,
respectively. We set L = 1 and U = 1. The span of this
potential is about 1.1 and its ratio of downhill region to
the uphill region is around 1/4.

The equations of motion of the particles are

I = *Z1(t)amg27x(lxl) +k((r2 — 1) — a)
g Q2= | pe, )
Iy = *zz(t)amgi;:?) —k((r2 — 1) — a)
OULj(x2 — x1)

- =2+ VD6, (4)
81’2

where z; denote position of particle i*". & (t) denotes
white noise with zero mean and correlation given by
(& (t)&;(s)) = d(t — s)d;;. D represents the intensity of
fluctuations. We set the physical scales of the problem
by putting the friction constant v to unity.
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Figure 3: Deterministic case: the current j vs the po-
tential switching period 7 for a = 0.5 and £k = 0.8 .

The z; are periodic functions with period 7, given by
z1(t) = 1, z(t) = 0 for 0 < 7 < 7/2 and z(t) = 0,
zo(t) =1for 7/2 <t < 7.

The quantity of our interest is the current, which we
define by:

(x(T) — x(to))

T -t '
where () denotes the ensemble average.
We obtain currents as a function of noise strength D,
the equilibrium separation of the particles a, strength of
Lennard-Jones potential € and the period of switching
between potentials 7.

)

j:

4 RESULTS AND DISCUSSION

4.1 Deterministic case

Particles in an asymmetric potential can drift on av-

erage in one direction even when operated at zero noise
level, e.g. when D = 0. The phase space of the sys-
tem can be either periodic or diffusive, depending on
the value of the control parameter.
For ¢ > 0, direct current is possible if the equilibrium
separation of the particles is larger that the smaller
arm of the potential Wa(x), Lyn, and smaller then the
longer arm of the potential Wa(z), Lyae. Lengths Ly,
and L,nq, given by:

2L 1
Lyar = — arcsin [5\/ 1+ \/g], (6)
T

Lmin = L- Lmaz- (7)

For period of potential equal to one particles move away
from the initial coordinates if the equilibrium separation
satisfies: 0.38 < a < 0.62. This is investigated in Figure
2, which shows the dependance of current on the equi-
librium distance and period switching. Zero value of
current corresponds to closed orbits in the phase space
of the system.

In Figure 3 we plot current j as function of 7 for a = 0.5
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Figure 4: Position of particles for (a) deterministic case
D = 0 and (b) stochastic case D = 0.01, for a = 0.25,
e =0.1, 7 =5, k = 0.8. The current arises as a result of
the presence of noise in the system.

and k = 0.8, for different values of ¢. As the switching
period increases, current for different values of € does not
differ significantly. For the case where ¢ = 0, the values
of the equilibrium distance for which a direct current
occurs depends on switching period 7 [10]. The length
of the window for nonzero current is smaller for smaller
values of 7, although the dependance is not monotonic,
see, for example the ¢ = 107° curve in Figure 3.

4.2 Stochastic case

We have already discussed in Section 4.1 that for
zero-noise case, the transport of particles occurs only
when the equilibrium distance a satisfies the condition
Lin < a < Lpaz. The addition of thermal fluctua-
tions to the system permits net motion (non-zero cur-
rent) even for values of a outside the deterministic limits.
Figure 4 shows the position of particles for (a) determin-
istic case D = 0 and (b) stochastic case D = 0.01, for
a =025 ¢ =0.1, 7 =5, k = 0.8. The phase space
of the particle pair is a closed orbit for the determinis-
tic case, whilst for the stochastic case the particles are
moving in the negative direction.

Since the model under consideration has seven parame-
ters, we have analyzed the dependance of current only
on two parameters. In our calculations we fixed 7 = 5
and a = 0.5. For convenience, we have plotted absolute
values of current.

Figure 5 shows the absolute value of current j as a func-
tion of spring constant k and intensity of interaction e,
for D = 0.01. Note ¢ = 0 corresponds to the case stud-
ied in [3]. For any fixed value of ¢, introducing stronger
coupling between the particles causes current to increase
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Figure 5: Stochastic case: the absolute value of current
j vs spring constant k£ and intensity of interaction e, for
D =0.01, =5 and a = 0.5.

initially, and for & ~ 2.5 the currents saturates. On
other hand, for any fixed value of k, the current has a
maximum in the range of € from 0.1 to 0.3. The location
of the peak in k — e space is governed by the strength of
the Lennard-Jones potential.

Figure 6 shows the absolute value of current j vs spring
constant k and intensity of noise D, for ¢ = 0.1. The
maximum of the current is at D = 0. On increasing the
noise strength and keeping spring constant k£ small, ran-
dom hopping in both directions dominates the ratchet
mechanism and the absolute value of the current tends
to zero. However, for any fixed value of noise intensity
D, the current increases monotonically with increasing
k.

Our preliminary results from exploring a subset of pa-
rameter space indicate that the addition of Lennard-
Jones interaction to a standard spring-bead model can
have important effect upon current. A fuller under-
standing of particle-particle interaction as well as particle-
ratchet interaction is required for modelling of DNA
transport and separation devices.
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Figure 6: Stochastic case: the absolute value of current j
vs spring constant k and intensity of noise D, for e = 0.1,

T =

8]

[4]

5 and a = 0.5.

D. Dan, A.M. Jayannavar and G.I. Menon, ” A bi-
ologically inspired ratchet model of two coupled
Brownian motors,” Physica A, 318, 40-47, 2003.
D. Ceperlay and M.H. Kalos, ” Computer simula-
tions of dynamics of a single polymer chain,” Phys
Rev Lett, 45, 313-316,1978.

B. Yan, R.M. Miura, Y. Chen, ”Direction Reversal
of Fluctuation-induced Biased Brownian Moion on
Distorted Ratchets,” J. theor. Biol., 210, 141-150,
2001.

H. Linke, T.E. Humphrey, P.E. Lindelof, ”Quan-
tum Ratchets and Quantum Heat Pumps,”
Appl.Phys. A, 75, 237-246, 2002.

P. Reimann, P. Hanggi, ”Introduction to the
Physics of Brownian Motors,” Appl. Phys. A, 1-10,
2002.

R.W. Hammond, J.S. Bader, S.A. Henck, M.W.
Deem, G.A. McDermott, J.M. Bustillo, J. M. Roth-
berg, ”Differential transport of DNA by a rectified
Brownian motion device,” Electrophoresis, 21, 74-
80, 2000.

Z. Csahok, F. Family, T. Viscek, ”Transport of
Elastically Coupled Particles in an Asynnetric Pe-
riod Potential,” Physical Review E, 55, 5179-5183,
1997.

A. Igarashi, S Tsukumoto, H. Goko, ”Transport
properties of elastically coupled Brownian motors,”
Physical Review E, 64, 0519081-0519085, 2001.

NSTI-Nanotech 2004, www.nsti.org, ISBN 0-9728422-9-2  Val. 3, 2004

29





