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ABSTRACT

In typical dynamic mode operation of atomic force
microscopes steady state signals like amplitude and phase
are used for detection and imaging of material. In these
methods, high quality factor of the cantilever results in
high resolution, but low bandwidth and vice versa. In
this paper we present a methodology that exploits the
deflection signal during the transients of the cantilever
motion. The principle overcomes the limitations on the
trade off between resolution and bandwidth present in
existing methods and makes it independent of the qual-
ity factor. Experimental results provided corroborate
the theoretical development.

Keywords: atomic force microscopy, state-space model,
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1 INTRODUCTION

Atomic force microscopes [1] (AFMs) utilize a can-
tilever to image and manipulate sample properties at
the nano-scale. Cantilevers have been utilized in biolog-
ical sciences to perform remarkable feats such as cutting
DNA strands [2] and monitoring RNA activity [3]. On
a similar note there are impressive proposals on using
cantilever based nanoprobes to interrogate cell dynam-
ics that will have significant impact on human health.
At present extensive research is being carried out to de-
velop tip-based data storage devices [4] using cantilevers
as sensors and actuators for high density data storage
in the range of 1012 bits/in2 with data read-write rates
of the order of 100 kHz. These events often have time-
scales in the micro-second or nano-second regimes. Cur-
rent technology does not meet the aforementioned high
precision and bandwidth requirements.

The cantilever is often operated in the dynamic-mode
due to its gentle nature on the sample [5]. In this mode
of operation, a cantilever with high quality factor is em-
ployed for high resolution. However, due to large set-
tling time, the steady state signals (like the demodulated
amplitude or phase) of the cantilever response are slow
and therefore the corresponding methods have a smaller
bandwidth. Using active Q control the bandwidth can
be increased [6], [7], [8]; however the trade off between
bandwidth and resolution remains inherent [8]. The ex-
isting methods do not utilize the cantilever model and

do not exploit the deflection signal during the transient
state of the cantilever.

In this paper we present a new principle that har-
nesses the transient part of the cantilever dynamics. As
in steady state methods, high quality factors result in
high resolution; however in the method presented, the
bandwidth is largely independent of the quality factor
and is determined by the resonant frequency of the can-
tilever. As is seen later it also provides advantages with
respect to resolution; particularly of events that have
very small time scales.

2 SAMPLE-DETECTION

The transient signal based detection method relies
on identifying the first mode model of the cantilever-
dynamics and consequently construction of an observer
that provides an estimate of the cantilever-dynamics.
The resulting architecture facilitates the detection of
tip-sample interaction force during the transient state
of the cantilever as described below.

2.1 Model of the cantilever-dynamics

When the cantilever is forced sinusoidally near its
first resonance frequency, its dynamic response is well
described by the first mode model given by:
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(1)

where the cantilever states x = [p v]T , Q, ω0, η, w, y
and υ denote the cantilever-tip position (p) and velocity
(v = ṗ), the quality factor, the first resonant frequency,
the thermal-noise, external forces acting on the can-
tilever, the deflection signal and the photo-diode noise
respectively. The cantilever model described above can
be identified precisely using its thermal-noise response
[9]. The cantilever can be imagined to be a system that
takes in the thermal-noise η, the dither signal g and
the tip-sample interaction force φ(x) as inputs (in which
case w = φ + g) and produces the photodiode signal y
as the output.
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2.2 Observer based state-estimation

The construction of the observer (see Figure 1) is
based on the cantilever-model and power spectral den-
sities of the noise. The observer dynamics is given by:

˙̂x = Ax̂ + Bg + L(y − ŷ); x̂(0) = x̂0,
ŷ = Cx̂,

(2)

and associated state estimation error (x̃ := x − x̂) dy-
namics is given by:

˙̃x = (A − LC)x̃ + Bη − Lυ; x̃(0) = x(0) − x̂(0). (3)

The observer mimics the dynamics of the cantilever
(given in Equation (1)) by utilizing the correcting term
L(y−ŷ) where L is the gain of the observer and y−ŷ := e
is the error in estimating the deflection signal. The er-
ror x̃ between the estimated state x̂ and the actual state
x of the cantilever, when no noise terms are present
(η = v = 0) is only due to the mismatch in the initial
state of the observer and the cantilever (see Equation
(3)). The error x̃ goes to zero when the real part of all
the eigenvalues of the matrix (A − LC) are negative.
Since the pair (A,C) is observable for the cantilever
model (i.e. rank([A CA]T ) = 2 when a second order
model is assumed) the eigenvalues of the matrix A−LC
can be placed anywhere by appropriately choosing L
[10]. Thus the error signal e due to initial condition
mismatch can be reduced to zero and in principle ar-
bitrarily fast by suitably choosing L. When there is a
change in the tip-sample interaction the cantilever dy-
namics is effected. This introduces an error in tracking
which evolves according to the cantilever-observer dy-
namics as given by Equation (3). Also, when the change
in the tip-sample potential persists, the observer by uti-
lizing its input y may track the altered cantilever state.
It can also be shown that in the presence of noise sources
η and υ the error signal e is a zero-mean stationary pro-
cess. Thus the error signal e shows the signature of
the change in the tip-sample behavior (buried in noise)
immediately after the change is introduced. The er-
ror e may recover its zero mean nature even when the
interaction change persists. This is in contrast to the
steady state methods where the information is available
not in the initial part but after the cantilever has come
to a steady state. The Kalman observer [11] can be
employed for optimal tracking in which case the error
process (also known as the innovation) has zero mean
and is white during perfect tracking.

2.3 Estimation-error characterization

The error profile due to a tip-sample interaction change
can be better characterized if a model of the effect of the
tip-sample interaction change on the cantilever-motion
is available. We assume that the sample’s influence on
the cantilever tip is approximated by an impact condi-
tion where the tip-position and velocity instantaneously

Figure 1: The observer estimates the state to be x̂ in
presence of thermal noise η and photo-diode noise υ.
The actual state is x. By a choice of the observer gain
L the error e in the state estimate goes to zero when
the cantilever is freely oscillating. When the cantilever
is subjected to the sample force φ, its dynamics is altered
whereas the observer dynamics remains the same. This
is registered as a nonzero value in the error e.

assume a new value (equivalent to resetting to a dif-
ferent initial condition). This is satisfied in most typi-
cal operations because in the dynamic mode, the time
spent by the tip under the sample’s influence is negligi-
ble compared to the time it spends outside the sample’s
influence [12]. The assumption is also corroborated by
experimental results provided later.

The error dynamics (characterized in the Laplace do-
main from Equation(3)) is given by,

e(s) =
η(s) + (s2 + ω0

Q
s + ω2

0)v(s) + (s + ω0
Q

)ν1 + ν2

s2 + (ω0
Q

+ l1)s + (ω2
0 + l2 + ω0

Q
l1)

, (4)

where [ν1, ν2]T is the initial condition reset due to change
in tip-sample interaction and L = [l1 l2]T is the gain
of the observer that must satisfy the stability criterion:
(ω0

Q
+ l1) > 0 and (ω2

0 + ω0
Q

l1 + l2) > 0.
From Equation (4) it can be seen that the tracking

bandwidth is characterized by,

B ∝ ω0

Q
+ l1. (5)

Since the choice of the gain term l1 is independent of the
quality factor Q, the tracking bandwidth of the observer
is effectively decoupled from Q.

From Equation(3), it can be shown that the signal
to noise ratio in the error signal e due to thermal noise,

SNRth ∝ (ω2
0 +

ω0l1
Q

+ l2)ν2
1 + (

ω0

Q
ν1 + ν2)2. (6)

Thus by increasing values of l1 and l2, SNRth and band-
width B increase. The signal to noise ratio due to photo-
diode noise is given by,
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∫ B
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, (7)

where the photo-diode noise υ is assumed to be white
with noise power equal to R. It can be seen that SNRv
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decreases with increasing values of l1 and l2. There-
fore the bandwidth constraint in the detection scheme
is mainly imposed by the photo-diode noise. It is ev-
ident that a desired tradeoff between signal to noise
ratio and bandwidth can be obtained by an appropri-
ate choice of l1 and l2 that is independent of Q. This
provides considerable flexibility when compared to the
existing steady state methods where Q determines the
bandwidth. For typical cantilever parameters and am-
bient conditions, the Kalman design yields a bandwidth
B � ω0/Q and the innovation process carrying the sig-
nature of tip-sample interaction has a zero mean and
white component. Note that the observer gain l1 can
be chosen large enough so that the cantilever state is
tracked within a couple of cycles of the dither forcing.
This shows that the optimal bandwidth is primarily dic-
tated by the resonant frequency ω0 of the cantilever.

2.4 Hypothesis-testing based detection

The sample detection problem is formulated by con-
sidering a discretized model of the cantilever (given in
Equation(1)) and the impact model for the tip-sample
interaction, as described by,

x(i + 1) = Fx(i) + Gg(i) + G1η(i) + δθ,i+1ν,

y(i) = Hx(i) + υ(i); i ≥ 0, (8)

where δi,j denotes the dirac delta function, θ denotes the
time instant when the tip-sample impact occurs and ν
signifies the magnitude of the impact. It is assumed
that the thermal noise and the photodiode noise are
white and uncorrelated. As indicated before, given this
statistics, the optimal observer is a Kalman observer
[11]. With an observer having gain K (the discrete-time
equivalent of L), the innovation sequence e(i) is given
by [13],

e(i) = Υ(i; θ) ν + ew(i), (9)

where Υ(i; θ) = [H; H(F − KH); · · · H(F − KH)i−θ]
and ew(i) is the innovation sequence when ν = 0. Υ(i; θ)
is a dynamic profile with unknown arrival time θ. When
there is no change in tip-sample interaction (i.e. ν = 0)
the innovation sequence has zero mean and is white [13].
When there is a change in tip-sample interaction the
innovation sequence becomes nonwhite and is sum of a
zero-mean and white sequence ew(i) and Υ(i; θ)ν with
θ and ν unknown.

Thus the objective of detecting a change in tip-sample
interaction is translated to the task of detecting the dy-
namic profile Υ(i; θ)ν in a zero mean white sequence.
This problem can be cast in hypothesis testing frame-
work as,

H0 : Yi = ew(i), i = 1, 2, . . . , n;
H1 : Yi = Υ(i; θ) ν + ew(i), i = 1, 2, . . . , n;

where the observed data Yi = e(i) is the innovation
sequence. The dynamic profile is detected by using a
likelihood ratio test [13], [14] and a decision signal is
obtained.

3 EXPERIMENTAL RESULTS

The advantages of the new methodology are well
demonstrated in the following experiment performed us-
ing a Digital Instruments multi-mode AFM. A cantilever
with first resonance frequency f0 = 70.1 kHz and qual-
ity factor Q = 180 was forced at f0 to an amplitude of
80 nm. A 0.5 V pulse train having 1 ms time period
and duty cycle of 50% was applied to the piezo-scanner
holding an HOPG (Highly Oriented Pyrolytic Graphite)
sample. Each pulse applied to the piezo generated a
sample profile (see Figure 2) having four peaks separated
by approximately 100 µs. The sample was brought close
to the cantilever so that the tip would interact with the
four peaks in the sample profile. Since the settling time
of the cantilever is in the order of Q/f0 ≈ 2.57 ms, the
cantilever was interacting with the peaks in the sample
profile during its transient state and it never recovered
the steady state during the experiment. From the am-
plitude profile of the deflection signal (see Figure 2), it is
not possible to detect the four peaks in the sample pro-
file. Since the steady state data based signals are slowly
varying, it can be argued that corresponding methods
fail to detect the small time-scale (high bandwidth con-
tent) profiles in the sample that may arise during scan-
ning.
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Figure 2: Cantilever-tip deflection data with respect to
approximate sample position is shown. Note that from
the amplitude profile of the deflection signal the four
peaks in the sample profile are not discernible.

Observe that the peaks are easily discernible in the
innovation sequence (see Figure 3(b)). When the can-
tilever is not interacting with the sample (until ≈ 950 µs)
the innovation sequence has zero mean and is white. As
soon as it encounters the first peak in the sample pro-
file (≈ 950 µs) the innovation sequence becomes non-
white and dynamic profile is detected. Between the first
and the second peaks in the sample profile, the innova-
tion sequence recovers the zero mean and white nature
until the second peak appears (≈ 1050 µs). Overlap-
ping dynamic profiles may appear in the innovation se-
quence (≈ 1050 µs) due to multiple hits with the sam-
ple in consecutive cycles. The likelihood ratio (see Fig-
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ure 3(c)) increases significantly when the dynamic pro-
file is present in the innovation sequence. The peaks
are detected within 2 cycles. The overlapping dynamic
profiles are detected as a single event (second peak) as
shown by the detection signal (see Figure 3(e)). Note
that the cantilever has not reached steady state and is
in transient during the entire experiment.
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Figure 3: (a) The dynamic profile buried in innovation
sequence, (b) the innovation sequence, (c) likelihood ra-
tio, (d) sample profile and (e) the detection signal are
shown when the cantilever is interacting with the sample
during its transient state. The four peaks are detected
by the appearance of dynamic profile in the innovation
sequence and it being captured by likelihood ratio as
shown by the detection signal.

The dynamic profile (see Figure 3(a)) persists for
approximately 25µs (≈ 2/f0 seconds) which is captured
within a data window of size M=128 with a 5 MHz sam-
pling. The dynamic profile is detected in 23.94µs (≈
2/f0 seconds) of its inception (with threshold ε=1681.3
corresponding to a false alarm rate of PF = 0.1% and
detection probability PD = 90% for a minimum step
size to detect ν=0.25 nm). To ensure at least one hit
with cantilever the sample has to be present for more
than 1 cycle (1/f0 seconds) of the cantilever oscillation.
A good estimate of the bandwidth is f0/4 Hz=17.5 kHz.
The experiment demonstrates a detection-bandwidth ≈
10 kHz. This is considerably large as compared to the
cantilever’s natural bandwidth as determined by f0/Q ≈
390 Hz. Note that high quality factor of the cantilever
does not limit the bandwidth in the proposed scheme.
It is evident from the innovation sequence and the like-
lihood ratio that the cantilever interactions with the
peaks in the sample profile are not uniform. However by
feeding back the demodulated amplitude signal to the
sample positioner and the cantilever this issue can be
effectively addressed.
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