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ABSTRACT

We study the e ect of spin-orbit iteration on the elec-
tron energy spectra in tree-dimensional (3D) nanoscale
semiconductor quantum rings. Ultrasmall InAs quan-
tum ring embedded in GaAs matrix is numerically solved
with the e ective one electronic band Hamiltonian, the
energy- and position-dependent electron e ective mass
approximation, and the spin-dependent Ben Daniel-Duke
boundary conditions. The multishift QR algorithm is
implemented in the nonlinear iterative method for solv-
ing the corresponding nonlinear eigenvalue problem. It
is found that the spin-dependent boundary conditions
lead to a spin-splitting of the electron energy states with
non-zero angular momentum. The splitting is strongly
dependent on the ring dimension. Meanwhile, it is larger
than that of quantum dot and demonstrates an experi-
mentally measurable quantity for relatively small quan-
tum rings.

Keywords : nanoscale semiconductor quantum rings,
spin-orbit interaction, mathematical modeling, computer
simulation, multishift QR algorithm.

1 INTRODUCTION

Semiconductor quantum nanostructures, such as quan-
tum dots, quantum rings , and quantum molecules in
recent years have been of a great interest from experi-
mental and theoretical points of view [1]—[20], [22], [23].
Semiconductor quantum rings have been fabricated and
studied recently [13]—[17]. They possess very interest-
ing physical properties including, such as far-infrared
spectrum and magnetic e ects. Unusual optical and
magnetic properties can be controlled by morphological
changes during the fabrication of nanostructure and by
the number of electrons which are bounded in a quan-
tum ring. Therefore, they are very attractive for po-
tential applications in nanoelectronics and optics. It is
known that the electron spin plays an important role
in the manipulation of energy states and modify the in-
trinsic property of structures. Spintronics is currently
a fascinating branch in electronics. Study of the spin-
dependent energy spectra is an essential element for the
development of semiconductor spintronics. In semicon-
ductor spintronic device, the carrier’s generation-recombination

and transport can be controlled by electron spin polar-
ization and the electron charge. It becomes necessary to
study the spin-dependent electron confinement for quan-
tum nanostructures in the development of semiconduc-
tor spintronics. It has been known that the spin-orbit
interaction impacts the energy and electronic properties
for III-V semiconductors [18]—[20]. However, no clear
description of the spin-orbit interaction on ultra-small
nanoscale quantum rings can be drawn from the litera-
ture.

We in this paper investigate the e ect of spin-orbit
interaction [1]—[5] on the electron energy states in nanoscale
semiconductor quantum rings. The e ective one-band
Hamiltonian approximation with the spin-dependent Ben
Daniel-Duke boundary conditions is formulated and solved
numerically. Most of calculations of the electron spec-
tra in semiconductor quantum nanostructures were done
within di erent 1D approximations. The confinement
potential in the radius direction often was approximated
by a parabolic potential and in the height direction was
taken to be the infinite outside the quantum ring. We
for the first time adopt a realistic hard-wall (of finite
height) 3D confinement potential that is induced by real
discontinuity of the conduction band at the edge of the
quantum ring. To solve the corresponding 3D e ective
one band Schrödinger equation, the multishift QR algo-
rithm is implemented in the nonlinear iterative method
for solving the corresponding nonlinear eigenvalue prob-
lem. The QR algorithm for solving the nonsymmetric
eigenvalue problem is one of the jewels in the crown
of matrix computations. With the multishift QR algo-
rithm [21], it is possible to reduces the cost of simula-
tion time up to 1 2 orders of magnitude. The non-
linear iterative method was successfully developed by
us for the simulation of semiconductor quantum nanos-
tructures [5], [12], [17]. The spin-dependent boundary
conditions mainly come from a di erence between the
spin-orbit interaction parameters in the quantum ring
and the semiconductor environment matrix. Due to
significant spin-orbit interaction in the nonsimply con-
nected torus topology, experimentally measurable spin
splitting can be observed in InAs/GaAs quantum ring.
The spin splitting depends on the variations of geomet-
ric (dot- and ring-liked) structures. They are dominated
by the inner radius, base radius, and height of the quan-
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tum ring. Under zero magnetic fields, it is found that
quantum ring can produce about 2 meV spin splitting
of excited electronic states which is substantially larger
than that of quantum dot (˜1 meV).
This article is organized as follows. Section 2 intro-

duces the mathematical model and the simulation tech-
nique. Section 3 describes the results illustrating the
e ect of the spin-orbit interaction on the electron en-
ergy spectra for ultra-small InAs/GaAs quantum rings.
Section 4 draws conclusions.

2 MATHEMATICAL MODEL AND

SIMULATION METHOD

Consider the electrons are confined in three-dimensional
quantum dot structures and apply an e ective one elec-
tronic band Hamiltonian, we have [5], [12], [17], [18]

Ĥ = Ĥ0 + V̂so(r), (1)

where Ĥ0 is the system Hamiltonian without spin-orbit
interaction and Vso(r) indicates the spin-orbit interac-
tion for the conduction band electrons. The expression
for Ĥ0 is as follows:

Ĥ0 =
h̄2

2
r

1

m(E, r)
r + V (r), (2)

where r stands for the spatial gradient, m(E, r) is the
energy and position dependent electron e ective mass

1

m(E, r)
=
P 2

h̄2
[

2

E +Eg(r) V (r)

+
1

E +Eg(r) + (r) V (r)
]. (3)

In (3), V (r) is the confinement potential, Eg(r) and
(r) stand for the position dependent band gap and the

spin-orbit splitting in the valence band, respectively. P
in (3) is the momentum matrix element. The spin-orbit
interaction for the conduction band electrons Vso(r) is
given by [2], [5], [12], [17]

V̂so(r) = i (E, r) · [ × ] , (4)

where (E, r) is the spin-orbit coupling parameter and
= {

x
,

y
,

z
} is the vector of the Pauli matrices. The

energy and position dependent (E, r) has the form

(E, r) =
P 2

2
[

1

E +Eg(r) V (r)

1

E +Eg(r) + (r) V (r)
]. (5)

For those quantum ring systems that have sharp dis-
continuity on the conduction band interfaces between

Figure 1: A 3D plot of the nanoscale semiconductor
quantum ring.

the quantum ring (material 1) and semiconductor ma-
trix (material 2), the hard-wall confinement potential
is

V (r) =
0, r material 1
V0, r materia l 2,

(6)

where V0 is the structure band o set. Combining the
Hamiltonian in equations (1), (2), (4), and taking an
integration of this Schrödinger equation with respect to
the direction perpendicular to the system interface, the
spin dependent Ben Daniel-Duke boundary conditions
for the electron wave function (r) is written as follows:

material 1(rs) = material 2(rs)
h̄2

2m(E,rs)
i (E, rs) [ × ]

n
(rs) = C0,

(7)

where C0 is some constant, rs denotes the position of the
system interface. We note that the expressions of elec-
tron e ective mass in (3), spin-orbit coupling parameter
in (5), and the equations of Ben Daniel-Duke boundary
condition in (7) are all energy and position dependent
relationships in this study.
We now consider the quantum ring as shown in Fig.

1, with the inner radius Rin, radius R0 and the thickness
z0 in the cylindrical coordinate (R, , z). The origin of
the system is at the center of the structure and the z
axis is chosen along the rotation axis. Since the sys-
tem is cylindrically symmetric, the wave function can
be represented as

(r) = (R, z) exp(il ), (8)

where l = 0,±1,±2, ... is the electron orbital quantum
number and the original model remains a two-dimensional
problem in (R, z) coordinate. From Eqs. (1)-(6) and
(8), we obtain equations
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h̄2

2m1(E)

2

R2
+
R R

+
2

z2
l2

R2
1(R, z) =

E 1(R, z), (R, z) material 1 (9)

h̄2

2m2(E)

2

R2
+
R R

+
2

z2
l2

R2
2(R, z)

+V0 2(R, z) =

E 2(R, z), (R, z) material 2. (10)

For the same reasons that the problem is symmetry
along the z axis, the spin-dependent boundary condi-
tions in (7) are given by

1(R, z) = 2(R, z), z = f(R) and (11)

1

m1(E)
{

1(R, z)

R
+
df(R)

dR
1(R, z)

R
}z=f(R)

1

m2(E)
{

2(R, z)

R
+
df(R)

dR
2(R, z)

R
}z=f(R)

+
2 ( 1 2)

h̄2
l

R0
1(R0, z) = 0, (12)

where z = f(R) is the generating contour of the quan-
tum ring on {R, z} plane, refers to the electron spin
polarization along the z direction. The electron energy
state and wave function in this model have a tightly cou-
pled and complicated relationships with the parameters
of quantum ring and the electron angular momentum.
The solution of the equations (9) (10) together with
the boundary conditions (11) (12) is solved with the
proposed numerical method.
The energy dependence of the electron e ective mass

and spin-orbit coupling parameter complicates the ana-
lytical solution [5], [12], [17], [22], [23]. The finite volume
discretized Schrödinger equation leads to a nonlinear al-
gebraic eigenvalue problem and is solved with the non-
linear iterative method to calculate all bounded energy
levels. To solve the corresponding matrix eigenvalue
problem e ciently, we use the multishift QR method.
Computationally, this method converges monotonically
and is highly cost e ective in the computer simulation
of 3D quantum rings. The nonlinear iterative method is
outlined as:

Step 1. Set initial energy E0;

Step 2. Compute electron e ective mass m;

Step 3. Compute spin-orbit coupling parameter ;

Step 4. Solve the Schrödinger equation; and

Step 5. Update the newer computed energy and back
to Step 2.

The iteration is terminated when the computed en-
ergy is convergent to a specified tolerance error. To ob-
tain the complete numerical solution of the Schrödinger
equation in Step 4, the Schrödinger equation is dis-
cretized with the finite volume method. The discretized
Schrödinger equation with its boundary conditions leads
to a generalized algebraic eigenvalue problem. The eigen-
values of the problem are computed with the multishift
QR method. The key idea of the multishift QR method
is to introduce carefully chosen perturbations to reveal
deflations that are not yet evident on the subdiago-
nal. In our experience, the proposed nonlinear iterative
method converges monotonically. The cost of simulation
time can be reduced about 1.5 orders of magnitude.

The energy spectrum of the quantum ring is a set
of discrete energy states that is formed and numerated
by a set of numbers (n, l, ), where n is the nth solu-
tion of the problem with a fixed l and . For the same
value of n, the parallel (antiparallel) orbital momentum,
and spin, the energy states still have two-fold degener-
ate (well-known Kramers degeneracy). But nth states
with antiparallel orbital momentum and spin are sepa-
rated from the nth state with parallel orbital momentum
and spin. For cylindrical quantum rings, a conventional
notation nL for the electron energy states is adopted,
where L = S,P,D, ... denotes the absolute value of l ,
and = ±1 refers to the electron spin directions corre-
sponding to the electron angular momentum direction.
For all calculations we choose the lowest energy states
(n = 1).

3 RESULTS AND DISCUSSION

In the calculation of the electron energy spectra for
InAs/GaAs quantum ring we choose the semiconductor
band structure parameters for InAs as follows. The en-
ergy gap is E1g = 0.42 eV and the spin-orbit splitting

1 = 0.48 eV. The value of the nonparabolicity para-
meter E1p = 3m0P

2
1 /h̄

2 = 22.2 eV, where m0 is the
free electron e ective mass. For GaAs, E2g = 1.52 eV,

2 = 0.34 eV, and E2p = 24.2 eV. The band o set
is taken as V0 = 0.77 eV. The spin splitting e ect is
obviously zero for the lowest energy state 1S±1. The
dependence of the 1P energy level splitting

E1P = E1P+1 E1P 1

on the ring size is shown in Fig. 2. Our calcula-
tion demonstrates significant spin splitting for ultra-
small semiconductor quantum rings. The splitting is
strongly dependent on the ring radius and decreases
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Figure 2: Spin splitting of |l| = 1 states for InAs/GaAs
quantum rings with di erent base radii and heights,
where the inner radius is chosen as 2 nm.

when the radius increases. At the same time for quan-
tum rings with relatively small thickness the spin split-
ting is small. This is a direct result of electron wave
function tunneling into the barrier along z-direction and
energy dependence of the electron e ective mass and
spin-orbit coupling parameters. To clarify the result
we have compared the “weight” of electron wave func-
tion inside and outside the quantum ring [5], [12], [17].
For the quantum ring with small thickness the elec-
tron ”spreads” out of the quantum ring, the energy
level properties are controlled by band parameters of
GaAs matrix. Under this situation an e ective di er-
ence of spin-orbit coupling parameters is smaller then

1(E = 0) 2(E = 0). When z0 increases the di er-
ence also increases and then becomes z-independent. It
makes the spliting e ect lager for lager z0.

Table 1: The 1P energy level splitting vs. Rin

Rin
(nm)

2 4 6 8 10

E1P 0.81 0.72 0.66 0.58 0.47

The energy splitting for the state 1P depending on
the ring size is defined as E1P and is shown in Fig.
2, where the ring’s inner radius is 10 nm [13]—[17]. Our
approach demonstrates a significant spin splitting (˜2
meV) for ultrasmall quantum ring. It is larger than that
of quantum dot (˜1 meV) which was reported in our
works [5], [12], [17]. For the small InAs/GaAs quantum
ring (z0 = 2 nm and R = 6 nm), spin splitting of |l| = 1
states with di erent inner radii Rin is summarized in
Tab. 1. It reports the variation of E1P , it increases
when the inner radius decreases.

4 CONCLUSIONS

The spin-orbit interaction play an important role
in the formation of electron energy states in nanoscale
quantum nanostructures and lead to a significant modi-
fication of the electron energy spectrum under zero mag-
netic field. We have studied the e ect of the spin-orbit
interaction on the electron energy states for ultrasmall
semiconductor quantum rings. We found the spin-orbit
interaction can significantly modify the electron energy
spectrum of InAs/GaAs semiconductor quantum rings.
Under zero magnetic fields, ultrasmall InAs/GaAs quan-
tum ring produces 2 meV spin splitting of excited elec-
tronic states which is substantially larger than that of
quantum dot (˜1 meV).
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