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ABSTRACT

The semiconductor industry is constantly pushing
towards ever smaller devices and it is expected that we will
see commercial devices with gate lengths less than 10 nm
within the next decade. Such small devices have active
regions that are smaller than relevant coherence lengths, so
that full quantum modeling will be required. In addition,
novel new structures, such as molecules, may represent the
active regions in such small devices. Here we outline a
fully quantum mechanical approach to the modeling of
coherent transport in ballistic structures. Examples of an
SOI MOSFET and a molecule are presented.
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1 INTRODUCTION

Almost 25 years ago, the prospects of making very
small transistors was discussed, and a suggested technique
for a 25 nm gate length, Schottky source-drain device, was
proposed [1]. At that time, it was suggested that the central
feature of transport in such small devices would be that the
micro-dynamics could not be treated in isolation from the
overall device environment (of a great many similar
devices). Rather, it was thought that the transport would by
necessity be described by quantum transport and that the
array of such small devices on the chip would lead to
considerable coherent many-device interactions. While this
early suggestion does not seem to have been fulfilled, as
witnessed by the quite normal behavior of today’s research
devices [2,3], there have been many subsequent suggestions
for treatment via quantum transport [4-8]. There is ample
suggestion that the transport will not be normal, but will
have significant coherent transport effects and this, in turn,
will lead to quantum behavior.

In this paper, we will review a full quantum formulation
of the three dimensional transport, which is coupled to a
three dimensional Poisson solver, in order to treat the
coherent transport in small devices. In the next section, we
will outline the basic approach, and then treat two example
cases—a small silicon-on-insulator MOSFET, and a
molecule attached to two conductors. Only the basic
introduction to this approach is given, as more details are
contained in the references and in a recent review article
that is scheduled for publication [9].
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2 A QUANTUM TRANSPORT
FORMULATION

There have been many suggestions for different
quantum methods to model ultra-small semiconductor
devices [10-12]. However, these approaches are uaually
quasi-two-dimensional, as the length and the depth are
modeled rigorously, while the third dimension (width) is
usually included through the assumption that there is no
interesting physics in this dimension. Other simulation
proposals have simply assumed that only one sub-band in
the orthogonal direction is occupied, therefore making
higher-dimensional transport considerations unnecessary.
These may not be valid assumptions, especially as we
approach devices whose width is comparable to the channel
length, both of which may be less than 10 nm.

It is important to consider all the modes that may be
excited in the source (or drain) region, as this may be
responsible for some of the interesting physics that we wish
to capture. In the source, the modes are three dimensional
(3D) in nature, even in a thin SOI device. These modes are
propagated from the source to the channel, and the coupling
among the various modes will be dependent upon the
details of the total confining potential at each point along
the channel. Moreover, as the doping and the Fermi level
in short-channel MOSFETSs increases, we can no longer
assume that there is only one occupied sub-band. Hence,
we use a full 3D quantum simulation, based on the use of
recursive scattering matrices [13-16].

Consider the Schr dinger equation in three dimensions:

PP d 1 dr 1 dt
2 my dx2 my dy2 m; de : (1)
Vx,v,z E

Here, it is assumed that the mass is constant, in order to
simplify the equations (for nonparabolic bands, the
reciprocal mass enters between the partial derivatives). We
have labeled the mass corresponding to the principle
coordinate axes. In silicon, these take on the values of my
and m as appropriate. We then choose to implement this
on a finite difference grid with uniform spacing a.
Therefore, we replace the derivatives appearing in the
discrete Schr dinger equation with finite difference
representations of the derivatives.  The Schr dinger
equation then reads
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Each hopping energy corresponds with a specific direction
in the silicon crystal. The fact that we are now dealing with
three sets of hopping energies is quite important.

There are other important points that relate to the
hopping energy. The discretization of the Schr dinger
equation introduces an artificial band structure, due to the
periodicity that this discretization introduces. As a result,
the band structure in any one direction has a cosinusoidal
variation with momentum eigenvalue (or mode index), and
the total width of this band is 47. Hence, if we are to
properly simulate the real band behavior, which is quadratic
in momentum, we need to keep the energies of interest
below a value where the cosinusoidal variation deviates
significantly from the parabolic behavior desired. For
practical purposes, this means that E,,, ¢ The smallest
value of ¢ corresponds to the longitudinal mass, and if we
desire energies of the order of the source-drain bias ~ 1 V,
then we must have ¢ 0.2 nm. That is, we must take the
grid size to be comparable to the Si lattice spacing

With the discrete form of the Schr dinger equation
defined, we now seek to obtain the transfer matrices
relating adjacent slices in our solution space. For this, we
will develop the method in terms of slices [9]. This is
modified here by the two dimensions in the transverse
plane. We begin first by noting that the transverse plane
has Ny, N, grid points. Normally, this would produce a
second-rank tensor (matrix) for the wave function, and it
would propagate via a fourth-rank tensor. However, we can
re-order the coefficients into a NyN, 1 vector, so that the
propagation is handled by a simpler matrix multiplication.
Since the smaller dimension is the z direction, we use N, for
the expansion. Now, equation (2) can be rewritten as a
matrix equation as, with s an index of the distance along the
x direction,

H () T, s ) T, (s 1) EI (s). “)

Here, [ is the unit matrix, £ is the energy to be found from
the eigenvalue equation, and

Hyr) 7, 0
I t, Hyr) .. ’ )
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The dimension of these two super-matrices is N, N,
while the basic Hamiltonian terms of (5) have dimension of
Ny Ny, so that the total dimension of the above two
matrices is NyN, NyN,. In general, if we take k and as
indices along y, and 1 and v as indices along z, then
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The quantity Wis 2(¢, ¢, ;).

With this set of matrices, the general procedure follows
that laid out in the previous work. One first solves the
eigenvalue problem on slice 0 at the end of the source
(away from the channel), which determines the propagating
and evanescent modes for a given Fermi energy in this
region. The wave function is thus written in a mode basis,
but this is immediately transformed to the site basis, and
one propagates from the drain end, using the scattering
matrice iteration

Ci(s 1) Cys 1 0 1
0 1 1 (1) "El H
C(s) Cy(s) 1 0
0 1 B () P(s)
©))

The dimension of these matrices is 2NyN, 2N,N,, but the
effective propagation is handled by submatrix compuations,
through the fact that the second row of this equation sets the
iteration conditions

1
C,(s 1) Py(s) C,(s) (Ty)'"EI H a0
Ci(s D) P(s) P, (s)C ()
At the source end, C;(0) = 1, and C,(0) = 0 are used as the
initial conditions. These are now propagated to the Ny
slice, which is the end of the active region, and then onto

the N, + 1 slice. At this point, the inverse of the mode-to-
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site transformation matrix is applied to bring the solution
back to the mode representation, so that the transmission
coefficients of each mode can be computed. These are then
summed to give the total transmission and this is used in a
version of the Landauer formula to compute the current
through the device (there is no integration over the
transverse modes, only over the longitudinal density of
states and energy).

3 AN SOI MOSFET

In the SOI MOSFET under consideration, we have an
oversized source and drain region which are doped to 3
10" cm™ n-type. The dimensions of the source and the
drain are 18 nm wide, 10 nm long and 6 nm high,
corresponding to the thickness of the silicon (SOI) layer.
The source and drain of the device have been given an
exaggerated size to exacerbate the interaction of the modes
excited in the source with the constriction present at the
source-channel interface. The channel of our device is a p-
type region. The channel is 10 nm in length, 6 nm in height
and 8 nm in width. In the z direction of our device, the gate
oxide has a thickness of 2 nm. Further, we have assumed
that the oxide in this device is perfect in so much as the
oxide does not have any spatial variation in thickness or
charges present. Below the silicon layer, lies the buried
oxide layer. This is 10 nm in thickness. This is large
enough to insure that there is no leakage from the silicon
layer, but also small enough to not waste computational
resources simulating a region where no interesting physics
is present. As discussed above, the x direction is along the
channel, and the z direction is normal to the top gate. The
simulation is carried out at low temperature. For this
structure, we find that the threshold voltage is about 0.45 V,
which does not vary much with doping in the channel, as
there are only 2-3 dopants in the channel region. In Fig. 1,
we illustrate the role of the impurities by plotting the local
potential in the x-y plane, at the center of the channel.
Here, both donors and acceptors are treated as discrete
entities, and the potential clearly illustrates the local
potential variations. The position of the dopant atoms has a
significant effect on the resultant device characteristics.
This is a result of the interference that the potential spikes
produce. Dopants that are positioned closer to the source of
the device have a greater effect on the threshold voltage
than do dopants positioned further down the channel due to
increased interaction with the waves incident at the source-
channel interface, causing additional reflections.

In Fig. 2, we plot the density in a vertical cut through
the x-z plane at the center of the channel, for a gate voltage
of 1 V. Here, the source-drain bias is only 10 mV, but the
conductance through the channel consists of one full mode
propagating from the source to the drain [17]. However,
looking at the figure, one does not draw this conclusion.
Rather, the self-consistent potential has created quantum
dots within the channel region, presumably due to quantum
reflections at the source- and drain-interfaces with the

channel, and it appears that the conductance is supported by
resonant tunneling into and through this quantum dot. The
actual position of the dot is bias dependent, and also
depends upon the details of the location of the impurities in
the channel.
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Fig. 1 The local potential in an x-y plane through the center
of the channel. The gate voltage is 1 V, and the source-
drain potential is 10 mV.
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Fig. 2 density in a vertical (x-z) plane through the center of
the channel. The gate is at the top, and the bottom region of
no density is the SOI layer. Here, the gate bias is 1 V, and
the source-drain bias is 10 mV.

The fact that the transport properties can be
dramatically affected not only by the position in the xy
plane, but by their position in the z direction as well, adds
additional importance to such simulations. The positions of
the dopants in the source and the drain can cause pools of
electron density to form. This leads to noticeable variation
in the density distribution in the source and, particularly, in
the drain. This illustrates the growing importance of the
mechanisms of coherence in ultra-short devices.

4 TRANSPORT IN A MOLECULE

As can be seen in eqn. (5), we need to know the
Hamiltonian (energy spectrum) of the molecule in its
configuration in order to use the recursive scattering matrix
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approach. The first-principles program, FIREBALL 2000,
a local atomic orbital density functional theory (DFT) based
method in the local-density approximation (LDA), was
used to calculate the Hamiltonian employed by the transfer
matrix code [18]. We have first applied our approach to a
xylyldithiol molecule connected to Au leads. Stretching of
the molecule, corresponding to pulling the leads apart, has
been simulated to compare with recent experiments [19].
In addition, FIREBALL 2000 was also used to calculate the
Hellman-Feynman forces used to drift the xylyldithiol
atoms upon stretching. In order to preserve the periodicity
of the unit cell, the gold atoms were left fixed in these
simulations, although the dynamics of the gold atoms are
believed to be important in the stretching. Molecules were
initially attached in the hollow-site configuration.

Our calculations agree within an order of magnitude
with  experimental calculations of the molecular
conductance and indicate an interesting trend in the
conductance upon stretching, with an apparent resonance
for ~0.2 nm. Orbital plots [20] help explain this
phenomenon. As the molecule is stretched, orbitals near
the Fermi level change in degree of localization. At the
resonance, there is a conductance enhancement due to the
planarization of the molecule leading to enhanced coupling
between gold states and molecular states. This is evident in
the LUMO-like orbital, as shown in Fig. 3. We also note
the effect of charge transfer at the metal-molecule interface
with applied bias, agreeing well with other theoretical
observations [21].

Fig. 3 Difference in the LUMO level at 0.06 nm (left) and
0.2 nm (right) stretch of the xylyldithiol molecule. The
dots are atomic positions.

5 CONCLUSIONS

Coherent transport is becoming much more important in
real semiconductor devices as the gate length is reduced
into the nanometer regime. Hence, the role of coherent
effects in device operation become important, and the
control of decoherence within the source and drain assumes
more importance [22]. We have developed a series of fully
three dimensional quantum transport models, coupled with
three dimensional Poisson solvers, to investigate such
coherent transport in small systems. This has been
illustrated here with an SOI MOSFET, and a molecule
attached to two gold leads. These approaches are quite

general and provide an alternative approach to other
methods which have recently appeared in the literature [10-
12, 23].
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