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ABSTRACT 

A multiscale-linking computer simulation of irreversible 

deposition of particles is developed by integrating 

mesoscopic Brownian dynamics simulations with 

continuum level conservation laws. The algorithm accounts 

for the flux of the particles from the bulk suspension into 

the simulation box by solving the macroscopic mass 

conservation equation. The location of particles introduced 

from the bulk into the simulation is derived from the 

appropriate probability distribution function of the motion 

of particles using the concept of probability after effect 

factor. This simulation technique is validated for the 

deposition of diffusing non-interacting particles leading to a 

monolayer formation. We show that the results for the 

kinetics and surface structures of the deposit are in full 

accordance with theoretical and previous simulation 

predictions. 

Keywords:  Multiscale, Brownian Dynamics, Monolayer, 

Colloid Deposition. 

1 INTRODUCTION

The deposition of colloidal particles onto solid surfaces is 

of tremendous importance in many technological 

applications such as industrial manufacturing, water and 

wastewater filtration, biofouling of artificial implants, and 

nanostructured coatings/films. Recently regular arrays of 

deposited nanoparticles have been proposed as the basis for 

the design of nanowires and photonic crystals using a 

‘bottom up’ synthesis approach. Numerous experimental 

studies have shown particle deposition to be typically 

irreversible and confined to a monolayer for stable colloidal 

suspensions [1]. 

Statistical-geometric approaches such as random sequential 

adsorption (RSA) model have been developed to study 

irreversible deposition (see [2] for a review). RSA 

simulations have shown that the maximum fractional 

surface coverage on a two-dimensional deposition surface, 

known as the jamming limit coverage, , is 0.547 [3]. In 

RSA the kinetics of deposition are studied by introducing a 

time scale that is based on the number of attempts to place a 

particle. For the case of non-interacting hard spheres, 

Schaaf et al. [4] derived an approach to jamming limit by 

incorporating the surface exclusion effects between 

adsorbed and free particles, and resulted in a power law of 

the form -  = t-2/3. The RSA model has been further 

extended to incorporate particle-particle and particle-

surface interactions, non-homogeneous deposition surfaces, 

different shapes of particles and substrates and particle 

tethering. Despite the advances in incorporating realistic 

physical phenomena into RSA simulations, they have two 

inherent limitations: (1) the adsorption of particles is 

simulated sequentially and (2) the kinetic data obtained do 

not contain physical time. Moreover, RSA models do not 

consider the transport of particles beyond a short distance 

comparable to the particle diameter from the surface. 

Particle deposition models have also been developed to 

explicitly consider the transport of particles to surfaces by 

diffusion and interaction forces based on lattice-based, flux-

preserving Monte Carlo simulations [5]. However, similar 

to RSA models, they are sequential models and cannot 

predict dynamic effects such as the evolution of surface 

coverage and deposit structure.  

To obtain complete information of the deposition process, 

non-sequential dynamic simulations need to be performed. 

An efficient method for the simulation of colloidal systems 

is the Brownian dynamics simulations (BDS), in which the 

force imparted on the colloidal particle by the solvent 

molecules is modeled by a stochastic (Brownian) force. 

Gray and Bonnecaze [6] developed a BDS technique for 

monolayer deposition, by considering open simulation 

boxes and accounting for the flux of the particles into the 

simulation box based on the probability distribution 

function of a particle undergoing diffusion in an unbounded 

medium.  For the case of deposition of particles onto a 

surface, the presence of a deposition surface causes the 

direction normal to the surface (i.e. the flux direction) to be 

non-homogenous. Hence a concentration profile develops 

above the surface leading to a net flux of particles into the 

simulation volume. Thus in order to perform simulations in 

boxes with an open top boundary and maintain the correct 

chemical potential, the flux of particles into the simulation 

volume must be consistent with those predicted by the 

continuum-level conservation laws.  

In this paper we describe a multiscale-linking algorithm for 

the simulation of the irreversible deposition of particles. 

The algorithm couples BDS in a simulation box with an 

open top boundary, with the solution of the continuum-level 

conservation law for particle concentration, to incorporate 

external fluxes from the bulk phase. The algorithm is 
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applied to the irreversible deposition of diffusing non-

interacting hard spheres onto a surface from a quiescent 

suspension, and the kinetics and deposit structures are 

compared to previous simulation (RSA) and theoretical 

results to validate the approach. This algorithm is shown to 

be computationally efficient as compared to conventional 

BDS in large simulation boxes with closed boundaries. 

2 SIMULATION TECHNIQUE 

Simulations are performed in a 3-dimensional simulation 

box with an open top boundary. The particle trajectories 

within the simulation box are computed based on the 

solution of the Langevin equation. In this work, the particle 

trajectories are based on the Langevin equation adapted for 

non-interacting diffusing particles [7]. As the particles 

deposit on the surface, a concentration gradient is 

developed due to which there is a net flux of particles from 

the bulk phase into the simulation box. During the course of 

the simulations, a number of particles are introduced into 

the simulation box through the open boundary to account 

for this flux of particles. The number of particles to be 

introduced in a given time instant is based on the solution 

of the continuum transient diffusion equation with adaptive 

Neumann boundary condition. The particles introduced into 

the simulation box are located appropriately in the 

simulation box by considering the probability associated 

with the motion of particles. 

Introduction of particles consistent with continuum level 

conservation laws: 

The deposition process under the influence of no external 

forces can be represented by the transient one-dimensional 

diffusion equation 
2

2

C C
D

t dz
                                         (1) 

where C is the concentration, D is the diffusion coefficient 

and z is the direction normal to the surface. 

The initial and far-field boundary concentrations are given 

by  

0(0, ) ( , )C z C t z C                  (2) 

where C0 is the bulk concentration. 

In order to develop self-consistent BDS, we considered the 

boundary condition at the surface to be given by the flux at 

the deposition surface from BDS, Js(t).
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The solution of the diffusion equation with non 

homogenous boundary condition can be obtained by the 

Duhamels principle as 
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The number of particles introduced into the simulation box, 

Nins, in a given interval of time from t to t+  is given by 

( )

t

ins

t

N Av A Flux t dt                                          (5)                        

where Av is Avagadro’s Number, A is the cross-section area 

of the top (and bottom) surface, and flux(t) is the flux of 

particles at the top of the simulation box (z=L) which is 

given by 

( )
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z
.                                                  (6) 

During the simulation, the flux of particles at the deposition 

surface at each time instant , Js(t), is evaluated. At each 

time instant the concentration profiles in the simulation box 

is solved for by numerically integrating Eq. 4. The flux of 

particles at the top of the simulation box is computed from 

Eq. 6 by implementing a numerical differentiation scheme. 

The number of particles to be introduced into the simulation 

box is then computed by Eq. 5. 

Location of particles introduced into the simulation box 

The particles that are introduced in the simulation box are 

placed consistent with the probability distribution function 

for the one-dimensional deposition problem. The 

probability of finding a particle at a location z1 at time t+ ,

given that it was located at z2 at time t is given by  
2 2

1 2 1 2
1 2

1 ( ) ( )
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4 42
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           (7)  

The location of a particle, h, in the simulation box is 

determined by considering the probability of particles in the 

bulk to be within a location h in the simulation box after 

time step t using the concept of the “Probability After-

Effect Factor” P introduced by Chandrasekhar [8]. Using 

the definition of P, the probability that a particle will be 

found within a location h in the simulation box (0  z  h) in 

time t, knowing that the particle was located outside the 

simulation box is given by 
2 2
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The ratio, q, of the probability of a particle to be within a 

distance h from the surface (z=0) to that within the entire 

simulation box is defined as  

Lh PPq /                         

           

On substituting from Eq. 8 and after integration 
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where ;
2 2

L

h L

D t D t

                      

The location of the incoming particles can be obtained by 

generating a uniform random number q, 0 q 1, and by 

solving for h from Eq. 9. This gives the z coordinate of the 

incoming particle, and the x and y coordinates are chosen 

from a uniform random distribution over the area at the top 

of the simulation box.  

3 RESULTS AND DISCUSSIONS 

The simulations were initially repeated for different 

simulation box heights, and it was found that consistent 

results are obtained for L=40a, where a is the particle 

radius. The simulation results presented subsequently 

represent an average over 8 stochastic simulations 

performed using different seeds to the random number 

generator. In these results, time has been made 

dimensionless according to 2/ aDtt .

Kinetics of irreversible monolayer deposition  

The kinetics of monolayer deposition were simulated for 

five different bulk volume fraction, , ranging from 0.0025 

to 0.05 and the results are shown in Figure 1. The kinetics 

profiles obtained have the same trend irrespective of . The 

fractional surface coverage, , increases rapidly with time at 

the beginning and slowly at the end when it reaches 

saturation. It can be seen from Figure 1, that the saturation 

is reached earlier for the higher . The kinetics of the 

process can be examined in more detail in their small and 

long time limits. 

Figure 1: Kinetics of monolayer deposition:  

Evolution of fractional surface coverage, , for different 

bulk volume fraction 

Initially when the surface is bare, the particle will deposit 

easily. However as time increases and more particles have 

deposited onto the surface, the particles that arrive at the 

surface may not deposit due to the reduced available 

surface area. Hence at short times, when there is no 

hindrance for particle deposition, the deposition surface 

behaves as a perfect sink (C=0 at z=0). By solving the 

unsteady diffusion equation (Eq. 1) with the perfect-sink 

boundary condition, it can be shown that  increases with 

square root of time [6]. Figure 2a shows the short-time 

kinetics for simulations with the different . It is observed 

that the short time kinetics indeed do follow a square root 

of time dependence.  

At long times, saturation in the surface coverage is 

observed. Particles from the bulk will periodically bombard 

the surface, and they will deposit when they will be able to 

find enough free space. Schaaf et al. [4] predicted a power 

law for the long-time kinetics i.e. -  = t-2/3. In Figure 

2b, we plot  against –2/3 power of time, and a good linear 

fit is observed for all the volume fractions. From these 

plots, we could recover the jamming limit coverage, , for 

our simulations. In these simulations we obtained jamming 

limit coverage of 0.542-0.546, which is close to the 

jamming limit coverage of 0.547 obtained from RSA [3]. 

The long-time kinetic coefficient, , decreases with  in a 

power law fashion (inset in Figure 2b) 

Figure 2: (a) Short time and (b) Long time deposition 

kinetics for  =0.0025 ( ),  =0.005 ( ),  =0.01 ( ),

 =0.025 ( ) and  =0.05 ( ). Inset in Figure 2b shows 

influence of  on long-time kinetic coefficient .
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Structure of Monolayer Deposits 

The structure of the deposited particles is characterized by 

the radial distribution function, g(r) [9]. The evolution of 

g(r) is shown in Figure 3 for =0.05. For small  values, 

g(r) deviates slightly from unity for all separation distances, 

indicating that the particle distribution is nearly random. As 

 increases, g(r) displays an oscillatory nature for short 

separation distances, with a considerable peak at separation 

distances equal to the particle diameter. The intensity of 

this peak increases with increase in . The shape of g(r)
indicates that only a short range ordering is present in the 

monolayer deposit. This is demonstrated by the fact that 

g(r) 1 for r/2a>3. The trends in g(r) were the same for the 

different bulk volume fractions, indicating that volume 

fraction affects only the kinetics of the deposition. These 

results for g(r) are in good qualitative agreement with those 

reported from experiments [1] and RSA simulations [9].

Figure 3: Radial distribution function, g(r), for the 

deposited layer for =0.05 and =0.1 ( ), =0.2( ), 

=0.3 ( ), =0.4 ( ) and =0.5 ( ). Each successive g(r) 

has been shifted by three units. 

Comparison of multiscale approach with 

conventional BDS 

In order to test our multiscale approach, we performed 

conventional BDS for irreversible deposition of particles in 

large simulation boxes. The algorithm used is traditional 

BDS [7] in which the top of the box is simulated as a closed 

boundary. The box height is kept large so that the saturation 

in deposition surface is obtained with the concentration at 

the top of the simulation box remaining nearly constant and 

equal to the bulk concentration. Figure 4 present the results 

of and g(r) for =0.005 for the conventional BDS and the 

multiscale-approach. These results are in remarkable 

agreement, thereby validating the multiscale approach of 

using small simulation boxes with the incorporation of 

external flux. The key difference between these simulations 

is the computational time, with the multiscale linking 

approach being faster by a factor of 5.  

Figure 4: Comparison of evolution of  and g(r) (inset) of 

the simulations performed with multiscale approach (solid 

line) and conventional BDS ( ) for =0.005. 

4 SUMMARY

In this paper, a self-consistent multiscale-linking BDS 

approach was developed to study irreversible deposition 

processes. The approach has been validated for the 

simulation of deposition of diffusing hard spheres. 

Excellent agreement for the kinetics of monolayer 

deposition with theoretical predictions in the limit of short 

and long time was obtained. The deposit structure was 

characterized by the radial distribution function and was 

found to be qualitatively similar to previous simulation 

results. The multiscale algorithm was compared to 

conventional BDS, and statistically indistinguishable results 

were obtained with smaller CPU times. This approach 

provides a powerful tool to study colloidal deposition 

problems under the influence of particle-particle and 

particle-surface interactions, and external force fields.  
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