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Abstract

As microfluidic devices become more common and more
elaborate, it becomes necessary to develop simulation
tools that allow the efficient and yet accurate three-
dimensional time-domain analysis of the behavior of these
devices. Detailed time domain analysis of three dimen-
sional microfluidic structures requires dealing with the
stiffness of the differential equations associated with the
motion of objects in viscous fluids and with updating the
solver grids. We minimize the issue of mesh adaptation
by using the boundary element method which only re-
quires discretizing and updating two dimensional surface
meshes. We address the issue of stiffness by introducing
a velocity implicit time stepping scheme that has much
better stability than the explicit Forward Euler scheme
and that has a much lower computational cost than a
fully implicit scheme.

1 Introduction

In microfluidics we are usually dealing with very small
scales and relatively slow velocities. In these conditions,
the Reynolds number is very low and the fluid motion
is dominated by viscous terms. These devices are oper-
ating in the Stokes flow regime[1].

In microfluidic devices developed for biological and med-
ical applications it is often the case where there are cells
or other objects moving in the fluid[2]. Manipulating
cells and other objects in microfluidic systems requires
the understanding of how the control forces and the fluid
forces acting on the objects interact[3]. Time domain
analysis of the behavior of the controlled objects and
their interaction with, often complicated geometries, is
very useful to optimize the actuators, the control system
and microfluidic chamber design [4]–[6].

The time-domain equations associated with the motion
of bodies in a very viscous fluid are very stiff. In order to
capture the overall movement of the body and maintain
stability using an explicit time integrating scheme, very
small time-steps must be used. Even with fast solvers,
this limitation on the time step seriously limits the be-
haviors that can be simulated. Stiffness is usually dealt
with by using an implicit time integration method. In

this case, a fully implicit method would require solv-
ing a set of non-linear equations involving the depen-
dency of the fluid force on the position and the velocity
of the objects. However, even though the fluid forces
are non-linearly dependent on the position of the ob-
jects, they depend linearly on the object velocities. It
turns out that, because the fluid is very viscous at these
length scales, the fluid force on a body traveling inside
the fluid is very strongly dependent on the velocity of
the body and not as much on incremental changes on
its position. We have dealt with the stiffness issue by
introducing a velocity-implicit time integration scheme.
By identifying that the stiffness of the equations came
from the dependency of the fluid force on an object on
its velocity and not as much on its position, we could
safely just solve a linear system at each time-step and
were able to eliminate the need to solve the non-linear
space-dependent equation.

To calculate the force acting on the moving objects at
each time step we use a boundary element method[7].
The boundary element method is particularly suitable
for use with time integration as it only requires the dis-
cretization of the surfaces of the domain. Furthermore,
at each time step, only the mesh of the objects that are
moving need to be updated. This approach contrasts
with volume discretization methods where the fluid do-
main is also meshed and must be updated at each time
step[8].

This paper is structured as follows. In section 2, we re-
view Stokes flow. In section 3, we present a boundary
element formulation using pressure and velocity bound-
ary conditions. In section 4 we discuss the issue of time
integration and introduce the velocity implicit time step-
ping method. In section 5 we present some results ob-
tained with the velocity implicit technique. Finally in
section 6, we discuss the advantages and limitations of
our approach.

2 Background information

If the Reynolds number Re = UL/ν is small, the viscous
term in the Navier-Stokes equations dominates over the
convective term and we get the Stokes equations

ρ
δu

δt
= −∇p + µ∇2u + b. (1)
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where u is the velocity field, p is the pressure and b are
body forces applied to the fluid. We assume that the
fluid is imcompressible i.e. that ∇·u = 0. Note that in-
compressibility is not a necessary condition for Stokes
flow. Also note that, while the Navier-Stokes equa-
tions are non-linear in u, due to the convective term,
the Stokes equations are linear.

We further simplify (1) by assuming that we are oper-
ating in a quasi-static regime. In these conditions the
time derivative term vanishes and we getj −∇p + µ∇2u + b = 0

∇ · u = 0
(2)

If a point force g is applied at x0 i.e. if b(x) = δ(x −
x0)g, the value of the velocity, pressure and stress tensor
are given by

ui(x) = 1
8πµ

Gij(x̂)gj = 1
8πµ

“
δij

r
+

x̂ix̂j

r3

”
gj

P (x) = 1
8π

pj(x̂)gj = 1
4π

x̂i
r3 gj

σik(x) = 1
8π

Tijk(x̂)gj = − 3
4π

x̂ix̂j x̂k

r5 gj

(3)

where x̂ = x − x0 and r = ‖x̂‖2, and σkj is the fluid
stress tensor

σkj = −Pδij + µ

„
δui

δxk

+
δuk

δxi

«
(4)

where P is the pressure (for the derivation see [7]).

2.1 Lorentz reciprocity

An integral equation formulation of a pressure driven
fluid flow problem can be constructed by using the Lorentz
reciprocity theorem [7]. The Lorentz reciprocity theo-
rem states that, given two solutions A and B of two
problems with different boundary conditions but in the
same fluid domain, the velocities and stress tensors are
related by

δ

δxj

“
uA

k
σB

kj
− uB

k
σA

kj

”
= uA

k

δσB

kj

δxj

− uB

k

δσA

kj

δxj

= 0. (5)

This equality holds if there are no externally applied

forces at the point of evaluation. The Lorentz reci-
procity condition is very useful for defining boundary
conditions.

If we integrate (5) over a fluid domain V excluding ob-
jects and points were external forces are applied (and
(5) does not hold) and use the divergence theorem we
getZ

V

δ

δxj

“
uA

k
σB

kj
− uB

k
σA

kj

”
dV =

Z
V

uA

k
σB

kj
nj| {z }

fB
k

dV −
Z

V

uB

k
σA

kj
nj| {z }

fA
k

dV = 0

(6)

where fB
k represents the force applied to the fluid along

the kth direction and where n is the exterior normal
surface vector (pointing away from the fluid).

If solution A is associated with an external unit force
applied at point x0 and pointing along the ith axis, we

get uA
k = Gk,i and σA

kj = Tk,i,j . This yields a set of
three equations of the formZ

δV

1

8πµ
Gki(x−x0)fB

k
(x)dA−

Z
δV

uB

k
(x)

1

8π
Tkij(x−x0)njdA = 0.

(7)

Note that the point x0 must be excluded from the inte-
gration domain for (5) to hold. To do this we decompose
V as V̂ −Sε(x0) where Sε(x0) represents an infinitesimal
sphere of radius ε centered on x0. As ε goes to zero the
equation becomesZ

δV̂

Gki(x−x0)fB

k
(x)dA−µ

Z
δV̂

uB

k
(x)Tkij(x−x0)njdA = 8πµui(x0).

(8)

3 Boundary Element Method

In pressure driven microfluidic systems, we are usually
dealing with pressure boundary conditions at the de-
vice’s inlets and outlets and with no-slip, no penetra-
tion velocity boundary conditions at the device walls.
We are then faced with determining the forces applied
to the moving objects in the system and updating the
position and velocity of these moving objects.

In this paper, we consider a fluid domain that is bounded
by a set of surfaces. These surfaces are the device walls,
open fluid surfaces at the inlets and outlets and the sur-
faces of the objects moving inside the device.

Since (8) is bilinear in the velocity and force at x0, if we
only use and evaluation point per panel we must know
either the velocity or the force applied at each point or
we must have a relationship between these values such
that the number of unknowns is the same as the number
of constraints.

For now we assume that the either we know the fluid
velocity or the forces applied to the fluid at each point.
We discretize the surface δV̂ into a finite set of triangular
or quadrangular flat panels. We approximate the value
of the velocity and the force applied to the fluid at each
panel by a constant value. Let U and F, in R

npanels×3,
represent the fluid velocity and forces applied to the fluid
just outside each panel.

npanelsX
n=1

Fn,k

Z
Pn

Gki(x−x0)dA−µ

npanelsX
n=1

Un,k

Z
Pn

Tkij(x−x0)njdA = 8πµui(x0).

(9)

A system of linear equations can be formed by using
collocation by setting x0 in (9) to be each of the panel
centroids. We can then represent (9) in matrix form as

GF − µ (T + 8πI)U = 0 (10)

where F and U are now vectors with 3npanel entries.

If we assume we know either the velocity of the force on
each surface we can split F into an unknown F1 and a
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known F2 and U into a known U1 and an unknown U2.
By splitting G and T accordingly we have»

G11 −µT12

G21 −µ(T22 + 8πI)

– »
F1

U2

–
=

»
µ(T11 + 8πI) −G12

µT21 −G22

– »
U1

F2

–
(11)

which can then be solved for F1 and U2. Note that F1

are the fluid forces, right outside of the object boundary.
By Cauchy’s theorem, the forces applied to the body are
the negative of the fluid forces.

For rigid objects whose surface are entirely in the surface
integration domainZ

δObject

uk(x)Tkij(x − x0)njdA = 0. (12)

We can use this result to avoid having to calculate the
panel T integrals for the panels that form closed rigid
objects.

4 Time stepping

In this section we start by establishing the connection
between the boundary element bilinear form (11), an the
acceleration and angular acceleration of mobile objects.
We then review the forward Euler integration scheme
and then present the velocity implicit time integration
method.

In order to implement a time-stepping scheme we must,
at some point, calculate the force distribution on the
surface of each mobile object. This can be accomplished
by using (11).

Assuming that during each time step the forces are con-
stant, the object acceleration a and angular acceleration
ẇ due to the surface stress forces are given by

vk+1 = vk + ∆tak+1 = vk − ∆tM−1
R
surface F

(q)
k+1dSq

wk+1 = wk + ∆tẇ = wk − ∆tI−1
R
surface r(q) × F

(q)
k+1dSq

(13)

Let p represent a point at the surface of the mobile ob-
ject above and let r(p) represent the vector from the
object’s center of mass to p, the velocity of p is given by

u
(p)
k+1 = vk+1+wk+1×r(p) = vk + wk × r(p)| {z }

=u
(p)
k

+
“
ak + wk × r(p)

”
×r(p).

(14)

4.1 Forward Euler

As a first step, we implemented a fixed step Forward Eu-
ler integration scheme. The scheme can be summarized
by the following equations

Fk = F(xk, θk,vk,wk)
Mak = Fk

vk+1 = vk + ak∆t
xk+1 = xk + (vk + 1/2ak∆t) ∆t
Iẇk = r × Fk

wk+1 = wk + ẇk∆t
θk+1 = θk + (wk + 1/2ẇk∆t)∆t

(15)

where the k subscript indicates the time-step index.

The forward-Euler algorithm described above is too inef-
ficient to be practical, because the method is stable only
for very small values of ∆t. The reason the forward Eu-
ler integrator is unstable and can only be used with very
small time-steps is that the time-domain equations asso-
ciated with the motion of bodies in a very viscous fluid
are very stiff. In order to capture the overall movement
of the body and maintain stability using an explicit time
integrating scheme, very small time-steps must be used.
Even with fast solvers, this limitation on the time step
would seriously hinder the range of behaviors that can
be simulated.

Usually, to deal with the stiffness issue, one would use an
implicit time-integration scheme like backward-euler or
the trapezoidal method. However, implementing an im-
plicit integration scheme in xk+1 θk+1, vk+1 and wk+1

would require solving a geometric non-linear equation
at each time step. The geometric non-linearity is asso-
ciated with xk+1 and θk+1. Solving a nonlinear equa-
tion involving xk+1 and θk+1 would require additional
expensive evaluations of the kernel integrals in (11).

4.2 Velocity implicit scheme

The velocity implicit scheme is an intermediate, and
much simpler approach, that takes advantage of the fact
that the stiffness comes from the dependence of the force
on velocity and not incremental changes of the position
of mobile objects. The velocity implicit scheme also
takes advantage of the fact that (13) and (14) both de-
pend linearly on the panel forces F. In this case, rather
than using vk and wk, which map to U1,k in (11), to
solve for Fk we can use vk+1 and wk+1 that map to
U1,k+1 = U1,k + ∆t∆UF1,k. Going back to (11) in our
formulation we get,

»
G11 − µ(T11 + 8πI)∆t∆U(.) −µT12

G21 − µT21∆t∆U(.) −µ(T22 + 8πI)

– »
F1,k+1

U2,k+1

–
=»

µ(T11 + 8πI) −G12

µT21 −G22

– »
U1,k

F2,k+1

–

(16)

There is no need to represent ∆U(.) explicitly because
the linear system is solved using GMRES that only re-
quires matrix vector products and therefore only re-
quires applying the operator.

The velocity implicit scheme is much more stable than
the forward Euler explicit scheme and is significantly less
expensive and complicated than a fully implicit scheme.

5 Results

An example of a sphere moving through a channel is
illustrated in Figure 1. This example compares the ve-
locity implicit method and the forward euler method.
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For the same problem, the forward euler method be-
comes unstable for time steps above 0.04s. The velocity
implicit method allows steps of 5s and even higher.
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Figure 1: Velocity-implicit vs. explicit time domain in-
tegration scheme.

6 Conclusions

In this paper we have presented a velocity implicit time
stepping scheme for the analysis of objects moving in
Stokes flow. The velocity implicit scheme is motivated
by the fact that the stiffness in the time integration of
the fluid forces acting on the moving objects is associ-
ated with the velocity of the objects rather than their
position. Using the velocity implicit scheme, rather than

a fully implicit scheme on both velocity and position,
avoids having to solve a non-linear equation at each time
step and provides the stability that is absent in fully ex-
plicit schemes.

We have used a boundary element formulation of the
Stokes flow problem to determine the forces applied at
the surface of the moving objects. Boundary element
methods are well suited for simulations with moving
boundaries because of the reduced amount of mesh up-
dating at each time step when compared to volume dis-
cretization methods.
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