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ABSTRACT 
We present a new approach to the simulation of 

uncertainties in micro-electromechanical systems, based on 
the same principle as perturbation methods. This approach is 
valid for large variations of the uncertainties and requires 
much less simulations than a Monte-Carlo method. An 
implementation in the case of an electrostatically actuated 
beam with uncertain stiffness is presented and compared 
with obtained with Monte-Carlo.  

Keywords: uncertainties, simulation, perturbation 

1 INTRODUCTION 
There are many difficulties to the simulation and 

modelling of micro-electromechanical systems : coexistence 
of many coupled physical phenomena, non-linearities and 
important uncertainties. They can also rise from simple lack 
of knowledge, for example, regarding the mechanical 
properties of a material. In fact, from an experimental point 
of view, such uncertainties are a major limiting factor to the 
credibility of MEMS models. 

Taking them into account is most usually done via 
“stochastic” simulation methods, the most famous of which 
is the Monte-Carlo method [1]. This costly but robust 
approach requires an important number of realizations in 
order to obtain a correct statistical description of the system. 
It also relies on the ability to generate a random variable 
with a probability density function (pdf) that may be neither 
gaussian nor uniform. Other methods include the stochastic 
finite-element method [2], second-moment analysis [3] or 
resolution of the Fokker-Planck equation [4].  

We propose in this paper a completely deterministic 
approach to the problem of simulating a possibly nonlinear 
system with one uncertain parameter, based on the principle 
of perturbation analysis and we illustrate this method with 
the case of a beam of uncertain stiffness undergoing 
electrostatic actuation. Results obtained with our method are 
then compared with Monte-Carlo simulations of the device. 

2 CLASSICAL AND PIECEWISE 

PERTURBATION METHODS 

2.1 Classical perturbation methods 

Let us consider a system (S)  with input x, output y and 
uncertain parameter , with zero mean and small variance. 

Let us consider also that the input-output relationship can be 
put in the form: 

,xfy  (1) 

Supposing small perturbations of the system, an nth-order 
Taylor expansion of (1) can be made: 

x

x

n

nn

x

F
d

fd

nd

df
xfy

0,0, !
...)0,(  (2) 

In the classical approach [3], the order of the expansion 
is usually limited to n=2. Relation (2) can then be used to 
determine the first and second moments of y, knowing those 
of . This approach requires the simulation of the original, 
unperturbed system plus n simulations for the higher-order 
terms of the series expansion. 

Although this method is quite straightforward, there are 
some cases in which the moments do not hold much 
information and for which it is preferable to express the pdf 
of the system’s output. This can be done using the following 
method.  

Starting from (2), the pdf of the system’s output can be 
calculated with the following formula [5]: 
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with 0  the real roots of xFy0 .

Provided the degree of Fx is small enough, finding its 
roots is a relatively simple task. The probability density of 
the system’s output can then be known, since the pdf of the 
uncertain parameter is supposedly known too (fig. 1). 

This scheme can be extended to the case of several 
uncertain parameters: the multidimensional equivalent of (3) 
involves calculating convolution-type integrals of the 
uncertain parameters pdfs on domains depending on the 
degree of Fx [5]. This is only practical for n=1, which 
restricts the usefulness of this method to simple low-
dimensional cases. Also, both methods are restricted to the 
case of small variations of the uncertain parameter(s), 
because the nth-degree Taylor expansion is only valid within 
a limited range. This drawback can be surmounted by using 
the following scheme, which is valid for arbitrarily large 
variations of the uncertain parameters. 
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fig. 1: the implementation of the perturbation method requires the simulation of 1+n systems. Each of these systems corresponds 
to a derivative of the original system near the central value =0

2.2 Piecewise perturbation method 

The piecewise perturbation method, whose algorithm is 
presented in fig. 2, consists in dividing the domain of the 
uncertain parameter in P sub-domains (which need not be 
the same size) with central values P,...,1  and applying 

to each of these sub-domains the pdf-based perturbation 
method described in the previous part. 

For each sub-domain, the system and its derivatives are 
simulated using the corresponding central value and a 
truncated pdf that is zero outside the sub-domain: the P

resulting partial pdfs can then be summed to yield the total 
pdf of the system’s output.  

It is clear that no matter how large the variation of the 
uncertain parameter, the sub-domain decomposition can be 
made fine enough to make the Taylor approximation valid. 
Another advantage of the method is that the size of the sub-
domains can be adapted locally to account for 
discontinuities of the pdf of  or for possible critical values 
of  for which a bifurcation occurs in the system, as in the 
following case. 

3 IMPLEMENTATION IN THE CASE OF 

A BEAM OF UNCERTAIN STIFFNESS 
Let us consider a beam-mass system undergoing 

electrostatic actuation. Using modal analysis, it is a simple 
matter to deduce the position of the mass from the 
Bernouilli beam equation. Introducing mass M, damping 
coefficient D, stiffness K, voltage V, gap g0, it is possible to 
approximate position y  as:  
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In (4),  is a random variable with mean 0 which is not 
necessarily Gaussian. Applying a first-order PPM, we write  
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Using a Taylor expansion of the non-linear term in (4), it 
is possible to show that, in the neighbourhood of k , (4) is 

equivalent to the following system: 
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Each of these equations must then be solved in turn for 

the different sub-domains of . The corresponding partial 
pdfs can then be calculated with (3) and (5) and then 
summed. It must be noted that there exists a certain value of 

 below which the system is pulled-in.  

4 RESULTS  
To illustrate our method, we consider the case of a 

system with the following parameters: K=15 kg.s-2, D=4.10-4

kg.s-1, M=2.10-7 kg, V=2.5 V, g0=2,5.10-6 m and =5.10-18.
For the sake of simplicity, we consider a Gaussian 

density for , with standard deviation 0,1. For the PPM, we 
split the interval [-0,4 0,4] into 40 sub-domains and obtain 
the results of fig. 3. 
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fig. 2 : schematic of the piecewise perturbation method. The total number of simulations is equal to the number of sub-domains 
(P) times the order of the Taylor expansion plus one (N+1).

fig. 3: pdf(y) obtained with first-order PPM. 

One can see clearly that the beam-mass system is pulled-
in for certain values of , near which the sub-domain 
decomposition could be refined. An example of a higher-
order PPM calculation is presented in fig. 4, with the same 
number of sub-domains as in fig. 3. We present in fig. 5 and 
6 the comparison of these results with a Monte-Carlo 
simulation of the system with 105 realizations of .

These figures show that the PPM gives roughly the same 
results as the Monte-Carlo method for a much lower 
computational cost, even for low PPM orders.  

fig. 4: pdf(y) obtained with third-order PPM. 

fig. 5: pdf(y) obtained with Monte-Carlo method. 
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Although the Monte-Carlo method is much more general 
and does not necessitate a Taylor expansion of the system 
with respect to the uncertain parameters, it is clear that the 
PPM also has advantages, such as the possibility to focus 
(i.e. to reduce the sub-domain size) locally in order to 
account for bifurcations in the solution and it has a good 
accuracy even for low expansion orders. It also makes it 
possible to account for large variations of the uncertain 
parameters, as opposed to classical perturbation methods. 
Finally, even though this approach is less immediate than 
the Monte-Carlo approach, it is much less costly: this should 
be even truer as the number of uncertain parameters 
increases. 

5 CONCLUSION 
We have introduced in this paper a novel approach to the 

simulation of uncertainties: this approach is based solely on 
deterministic simulations of the perturbed system and of its 
derivatives with respect to the uncertain parameter. As 
opposed to other perturbation methods, it is valid for 
arbitrarily large variations of the uncertain parameter. We 
have shown how this method applies in the case of an 
electrostatically actuated beam with uncertain stiffness. The 
results were compared with those obtained with a Monte-
Carlo simulation of the system. This method is currently 
being extended to the case of many uncertain parameters. 
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fig. 6: comparison of first-order PPM (40 sub-domains, blue 
line), third-order PPM (40 sub-domains, black line) and 
Monte-Carlo method (105 realizations, red line) at four 

different moments.  
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