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ABSTRACT

The accurate prediction of arsenic activation after spike
annealing is mandatory for Ultra Shallow Junction (USJ)
sheet resistance optimization for advanced NMOS
transistors engineering. For the first time, we propose a fast
and efficient methodology which consists in both predicting
coefficients which model the arsenic activation, and in
calibrating a physically-based mobility model from
experimental data. Calibration was obtained by a genetic
algorithm optimization of a criterion taking into account the
difference between simulation and measurement, and both
experimental and modelling uncertainties.
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1 INTRODUCTION

As device downscaling continues, the sheet resistance of
source/drain diffusion areas (S/D) becomes the major
limiting factor of the deep submicron device performance
[1]. To obtain low resistance USJ as required for nanoscale
devices, spike anneals are usually performed. These anneals
(a few seconds at 1050°C) allow to achieve high doping
level activation with little diffusion. In the case of arsenic it
is known that for high doping concentration, a fraction of
dopants remains electrically inactive after the anneal. It is
accepted that the inactive unprecipitated dopant is in a
clustered form, in a mass action equilibrium with the
ionized As [2]. The rigorous prediction of inactive fraction
would require dynamic models that describe the formation
and the kinetic evolution of each population of a great
number of different arsenic-vacancies defects. However,
such a model has not been reported in literature until now.

In this work, we propose a new methodology to
determine, from an empirical modelling, the electrically
active arsenic distribution after a 1050°C spike anneal for a
wide range of ion implantation conditions.

2  EXPERIMENTAL DATA

In order to ensure the statistical confidence on the
results, experiments have been performed following two
adjacent standard 3° Design of Experiments (DoE) on the
two implantation factors : energy and dose. The center of
each design was replicated 3 times on different wafers to

estimate the experimental dispersion. 8” P-type substrates
were implanted with arsenic through a 2 nm screen oxide,
with an EATON NV8200P implanter. The details of the ion
implantation conditions are given in table 1. Finally dopants
activation was performed with a 1050°C spike annealing.

Energy| Dose Rsheet 6 Rsheet
2 measured | | optimized
(keV) | (em™) values (Q/0) %) |yalues (Q/o)
P1 3 108 14500 14 14214
P2 3 2.510" 1120 9.1 1091
P3 3 510" 750 47 749
P4 3 175107 320 4 333
P5 3 3107 290 5.2 289
P6 9 10" 5700 12.5 5423
P7 9 2.510" 555 4.5 546
P8 9 2510 580 5.2 583
PY 9 2.510" 545 4.6 541
P10 9 2.510" 560 3.6 577
P11 9 510" 374 4 385
P12 9 1.75 107 220 4.6 225
P13 9 1.75 108 220 3.2 218
P14 9 1.75 10° 205 6 200
P15 9 1.75 10° 218 3.7 212
P16 9 3107 193 3.6 185
P17| 15 10" 4500 6.7 4557
P18| 15 2.510" 430 47 417
P19| 15 510" 273 4.5 267
P20| 15 |[1.7510° 161 43 162
P21| 15 3108 152 3.8 159

Table 1: Experimental ranges for arsenic implantation
following two adjacent standard 32 DOE, Rypeet
measurements with its standard deviation o, and Ry
values predicted after the optimization stage.

The As chemical profile is obtained from SIMS
measurements. The MCs," technique was used [3] on a
Cameca IMS-5f instrument with a primary (Cs® beam)
impact energy and incidence angle of 1 keV and 50°
respectively, in order to reduce ion beam mixing and
equilibration depths.

Four-point probe measurements were also performed to
get the sheet resistance (see table 1).
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3 ELECTRICAL RESPONSE
MODELLING

To determine the As active distribution we adopted an
inverse modelling methodology. Actually we look for the
profile which modelled Ry value is as close as possible to
the corresponding experimental value.

The sheet resistance is modelled by :

R = (4 N e 00 BON e 00, N e G0 ] (D

Nactive(X) and Nipaeive(X) are the active and inactive
arsenic distributions respectively. p is the mobility model
as explained in section 3.2.

3.1 Active arsenic distribution

The active arsenic profile Nyee(X) is obtained by
truncating the chemical profile Ca(x) at a maximum
concentration value C lim representing the electrical
solubility threshold of arsenic into silicon. C_lim is usually
set to 2x10%° em™ [2].

As the calculation of Ry, with a constant C_lim leads
to big discrepancies with the experimental values (see
“Literature data” in figure 5), we have improved the
modelling of the active profile. Indeed, on the one hand we
assumed that C_lim is a function of the implantation
conditions, and on the other hand the As active distribution
is assumed to have a constant drop at the interface SiO,/Si
due to pile-up (figure 1).

N e (X) = x C lim forx <C, 2
C

1

where C; is the characteristic length of the pile-up
decay.

1E+21
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Figure 1: Example of the chemical and active As profile
obtained after optimization

Then C_lim was extracted for each experiment of the
DoE while keeping the mobility model parameters to their
literature value.

Finally a quadratic model of the response log(C_lim) as
a function of the factors log(dose) and energy was
generated with the software ECHIP [4].

log(C _lim) = C, + C, log(dose) +
C, log(dose) -energy + C, (log(dose) )* + 3)
C, energy ’

The linear term in energy of that empirical model has

been removed since its effect is negligible according to the
Pareto effects graph in figure 2.

**Pareto effects graph for response 'log(C_lim)'**
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Figure 2: Pareto effects graph giving the classified
effects of the factors scaled to units of the response
log(C_lim), with their confidence intervals.

With an adjusted R? of 0.99, the quality of the RSM
model is very satisfactory. Moreover figure 2 shows small
confidence intervals, then the accuracy of the terms of the
model may be quite good. The coefficients generated by
ECHIP are displayed in table 2.

In figure 5 we compare results obtained with literature
data, and those using the empirical model of C lim and
including the pile-up effect (called “First fit”). It appears
that the new modelling of the active profile gives better
predicted Ryee; values than before.

3.2 Mobility model

The mobility model p from (1) is a Mathiessen’s
combination of two mobility models Wacive and Winactive
depending on the active and inactive As profile
respectively.

1 1
= (4)

1
}’l uactive

“inactive

Wactive corresponds to the Masetti’s model with
parameters set to their initial value [5].
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Winactive 1S @ term added by Rousseau et al. [6] to take into
account carrier interaction with neutral inactive defects.

“active = MO + (5)

K
n inactive — * q (6)
m N inactive (X)

where q is electron charge, m* is its effective mass (we
used m*=0.26 of electron mass). K is the Rousseau’s fitting
parameter for neutral scattering (K=4.59x10" cm™s).

4 OPTIMIZATION CONSIDERING
UNCERTAINTIES

To determine more rigorously the value of the
parameters of (1) and particularly those used to obtain
Nacive(X), we have to choose a criterion to be minimized.
According to the Maximum Likelihood theory [7], the most
probable parameters should minimize the following
expression :

21 (h measured j - h predicted j(cl E C13 ))2

2
= 2 E ahpredictedj(cl,-..,CB)
ol +) o
i=1 oC. i

1

0

2

where h=Rg,..! is a transformation which linearize S to
make the numerical optimization easier.

The parameters Cy, ..., C;3 are to be optimized and their
initial value is given in table 2. C; corresponds to the
characteristic length of the pile-up drop. C,, ..., Cg
correspond to the coefficients of the quadratic model (3). C;
is a parameter that makes the transition between the
chemical profile and C_lim smooth. The SIMS error on the
profile depth and the concentration [3] are also taken into
account with parameters Cg and C, respectively. Their
values are close to the unity.

C,.(x,Cq4,Cy)=C, SIMS(C, x) (8)

where SIMS(x) is the experimental chemical profile of
arsenic.

Finally C,y, ..., C;; are the mobility parameters p;, , Cs
and K chosen to be optimized as done in [6].

The coefficient o; in the expression (7) is the standard
deviation of each Ry measurement. oc; is the standard
deviation of each model parameter obtained from analysis
of results given by ECHIP for the coefficients of the
quadratic model (3) and from literature data ([2], [3], [5]

and [6]) for the other parameters. The search range of the
parameters is taken to the nominal value + o;.

Lit 1 prse | FEP
data .
fit optim.
value
C, (nm) € [0.1,3] - 1.5 1.4
C, € [19,21] 20.3 | 19.6945| 19.655
C; €]0.8,0.9] - 0.85 0.89
C,4 € [-0.0081,-0.0075] - -0.0791 |-0.00786
Cs € [-0.4,-0.3] - -0.3561 -0.4

Cs € [0.0006,0.00064] - 0.000625| 0.00061

C, €10.7,0.99] - 0.9 0.76

Cs € [0.975,1.025] 1 1 0.975

C, € [0.95,1.05] 1 1 0.95

Cu=1u (em¥/Vs) € [30,50] | 434 | 434 | 364
Cu=B € [1.8,3] 2 2 3

C,=Cs (cm™) € [2.5-4 10™]|3.43 10”°|3.43 10”°]2.61 10%°

C15=K (cm™s) € [3-6 107] | 4.59107|4.5910"| 310’

S 178 16.5 6.8

Table 2: Rgeee model parameters before and after
optimization, with their search range estimated from the
confidence intervals of the Pareto effects graph (Figure 2).

Facing this high dimensional (13 parameters)
optimization task, we have implemented in the software
MATHCAD (8] a Fast Evolutionnary Program (FEP) based
on Yao work [9]. This global optimization method is a
particular case of Genetic Algorithms, known to find the
global optimum in most cases without getting trapped by
local minima. The flowchart of the algorithm used is
detailed in figure 3.

Random generation of the initial population of
30 individuals in the search space

0

Fitness for each individual
based on the criterion S

Each individual from the
best 50% ones generate
one offspring by gaussian
mutation

0

| Fitness evaluation for each offspring based on the criterion S

iy

- Parents and offspring union
- Selection of the best 24 individuals
- The last 6 are taken randomly among the other 36

i

- Stop if the halting criterion is satisfied
- Otherwise next generation :

Each individual from the
50% others generate one
offspring by cauchy
mutation

Figure 3: Flowchart of the Evolutionnary Programming
algorithm used in the parameters optimization
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5 RESULTS
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Figure 4: Convergence of the FEP.

Figure 4 shows the evolution of the value of the S
criterion when the number of generations is increased. It
indicates that after 350 generations, the algorithm has
probably converged on the global minimum since most
individuals of the population are very close to the best
individual. In addition the best individual of the population
changes only a little after the generation 100.

100

W Literature data
g Firstfit
10 FEP optimization
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0,001
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Figure 5: Comparison of each component value of the S
criterion obtained with literature data parameters, with
values from the empirical model of C_lim and considering
pile-up effect, and with parameters given by the
genetic optimization.

The values of the thirteen parameters obtained after the
genetic optimization are given in table 2. One can see that
the optimized set of coefficients gives the lowest criterion
value of the three trials. The values of Ry, predicted by (1)
after the FEP optimization are displayed in table 1. These

values are quite close to the experimental ones. Indeed
figure 5 shows that the components of the S criterion have
been, on the whole, improved after the FEP optimization
compared with previous work.

6 CONCLUSION

An efficient and statistically rigorous methodology has
been developped to calibrate a high number of model
parameters required to simulate the USJ resistivity. The
method accurately predicts the arsenic active distribution
for a wide range of ion implantation conditions and a
1050°C spike anneal. The method also optimizes, with a
genetic algorithm, the relevant set of model parameters,
considering the experimental and modelling uncertainties.
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