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ABSTRACT 

For full characterization of a surface micromachined 
MEMS device, where the thickness of the moving layer is 
just a few times the gap size, the modeling has to take 
large-signal behavior and end effects into account. In this 
work, a numerical method using finite differences is 
implemented in Simulink to solve the Reynolds equation. 
The spatial derivatives are solved using the finite 
differences. The use of the Simulink capabilities for time 
integration allows solving of the time derivatives at any 
mesh point. To increase efficiency, a low-level language is 
used inside Simulink to solve the parameterized finite 
differences and the time derivatives. As the Reynolds 
equation is being solved inside a high-level language 
description, other system parameters (such as: mass, spring 
constant, non-trivial geometry) can be easily incorporated. 
Measurements on a complex 2DOF MEMS device are 
compared with simulation results, and the agreement 
validates the full system approach proposed. 

Keywords: MEMS modeling, squeeze film damping, large-
signal analysis, macro model 

1 INTRODUCTION

The penetration of microelectromechanical system 
MEMS technology in an increasing number of applications 
calls for advanced modeling tools to deal with the 
complexity of the system on the microscale and the 
commercial drive towards first-time-right and fast 
turnaround design [1].  

The dynamics of a MEMS microstructure is governed 
by inertia and the squeeze-film damping. The non-linear 
behavior of the Reynolds equation and the frequency 
dependence of the gas film present a modeling challenge.  

For simple geometries and simple movements, the 
Reynolds equation can be solved and efficient full-system 
models based on analytical solutions can be implemented 
[2,4] accounting for large signal behavior [3,4] and 
including end effects [5,6]. For more complex geometries, 
the Reynolds equation can not be solved analytically and 
numeric solutions have to be used. Usually these solutions 
are based on Finite Element Modeling [6], or Finite 
Differences [7]. However, for simulation at the full-system 
level, while accounting for large signal and end effects, the 
calculation effort required to accurately describe the motion 
of the overall system becomes excessive. In this paper we 

report a flexible way to model complete MEMS systems. 
Reynolds equation is solved using the finite differences 
method, implemented in such a way that other relevant 
system parameters can be introduced. Simulations of a 
model of a 2-degree-of-freedom (2DOF) structure are 
compared with measurements.  

2 MOMENT ACTUATED 

ACCELEROMETER

The device used in this work is a 2DOF moment-
actuated accelerometer (Fig. 1). The movement of the 
structure is fully characterized by two state variables: 
displacement w1, and angle 1 (Fig. 2). Such a moment 
actuated device may compare favorably to a normal 1DOF 
accelerometer in terms of damping coefficient (higher 
quality factor). The modeling difficulties of the structure 
arise from the fact that it presents two distinct movements 
(translational and rotational) with cross-couple terms in 
between. 

Figure 1: Schematic of the moment actuated accelerometer. 

2.1 Fabricated Device 

The epi-poly process was used for the fabrication of the 
test structures [8]. This process is very suitable for the 
fabrication of relatively thick and high aspect ratio free-
standing beams on top of a silicon wafer. This device is 
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basically a free-standing lateral beam (200 m long, 3 m
wide and depth of 10.6 m) anchored at one end (the base) 
only (Fig. 3).  

Figure 2: Identification of the state variables used in the 
2DOF model. 

The beam can be deflected by electrostatic actuation in 
the plane of the wafer using a voltage applied across 
parallel plate capacitors (2 m gap). These are composed of 
two sets of electrodes located alongside the free-standing 
tip, with counter electrodes anchored to the substrate. The 
deflection can be measured using a set of differential sense 
capacitors located alongside the free-standing tip. Finally, 
there are electrically isolated stoppers to limit the lateral 
motion.  

3 SQUEEZE FILM MODELING 

For structures in which only the width of the small gap 
between two plates changes in time, the pressure changes p
relative to the wall velocity are described by the modified 
Reynolds equation [3]: 
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where np  is constant, and the pressure p, gas density 

and gap size h are functions of space and time. The gas has 
a viscosity , and Qpr is the relative flow rate coefficient. 
When an isothermal process is assumed (n=1), density
can be replaced with pressure p.

The modified Reynolds equation is used, because 
rarefaction effects have to be included. For transitional and 
molecular damping regimes, Qpr is a function of the 
Knudsen number Kn, the ratio between the mean free path 
of the gas molecules and the gap separation. In this work, 
the flow rate coefficient is given by [2]: 
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where 0 denotes the mean-free-path at pressure P0.

Figure 3: Photograph of the fabricated device. 

3.1 Finite Differences Model 

For the finite differences model, the surface is first 
divided into a rectangular grid of M N elements (x=m. x,
y=n. y, m=0…M-1, n=0…N-1). At each mesh point, 
equation (1) is implemented. The spatial derivatives are 
solved using the finite difference method [9]. Using this 
method, we end up with a set of M N time differential 
equations. 

Very important in any squeeze-film model, is the 
inclusion of large signal effects (already accounted for in 
the modified Reynolds equation) and end effects [5,6]. 
Incorporation of the end effects in this model implies that 
the pressure on the plate edges is not simply assumed at 
ambient pressure, but rather that the system dynamics are 
also considered at the device edges [6].  

3.2 Model Implementation 

In order to solve the time differential equations, 
Simulink was used. A parameterized model was built in a 
low level language (C language) and introduced in 
Simulink. 
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Figure 4: Pressure distribution in a a) sensing and b) actuation arm using a 80 20 finite difference mesh.

For each time interval, the spatial derivatives are solved 
using the finite difference method, and the time derivatives 
are solved by the methods already implemented in 
Simulink. The use of a high-level language description 
enables the introduction of other system properties (full 
system functionality), and a very good parameter flexibility. 
Once the model is implemented is very easy to study the 
influences of the various parameters (mesh size, structure 
dimensions, pressure changes, gap sizes, etc.). 

The implemented squeeze film model was tested for the 
different arms of the structure (actuation and sensing arms). 
As these have different sizes, different mesh grids have to 
be used for each of the arms. The pressure distribution is 
presented in Fig. 4 for a single actuation and sensing arm, 
when the structure oscillates with a maximum angle 
( =0.0051 radians) and displacement (w1=0.685 m) at 
400 kHz. 

3.3 Reduced-Order Model Generation 

Another significant advantage of the use of a high level 
language description is the increase in flexibility. Reduced- 
order modeling techniques [10] have been introduced to 
solve dynamic problems. Based on some FEM or FD 
simulations, a reduced model can be build having the same 
response of the original gas film full model (even for 
complex geometries).  

For testing the finite difference modeling approach and 
evaluation of the advantages of reduced-order models, a 
reduced-order model was build with just a spring-damper 
network [10]. For a large-signal behavior of the reduced-
order model, simulations have to be performed for several 
gap sizes, since the values of the spring and damper are gap 
dependent. The huge advantage of the reduced model is a 
large decrease in computer time per simulation.  

Moreover, the flexibility of the finite difference model 
enables the automatic implementation of the squeeze-film 
reduce model: the simulations are performed in a 
programmed sequence, and all the fitting that is needed is 
automatically generated.  

After the generation of the reduced-order model, some 
results of the finite difference model are compared with the 
reduced model. Fig. 5 shows the damping moment of both 
models, when the structure oscillates with a maximum 
angle ( =0.0051 radians) and displacement (w1=0.685 m) 
at 500 kHz.  

4 FULL SYSTEM MODEL 

The movement of the 2DOF structure, in the absence of 
an external acceleration, can be described by the non-linear 
differential equations (a voltage V is applied to the 
actuation arms): 
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A translation and a rotational equation describe the full 
system. Most of the forces and moments depend on both 
state variables (w1 and 1) – cross-couple terms are present. 
All these dependencies can be easily implemented within 
Simulink. The full system (with the finite difference 
method used to compute the damping force and moment) is 
thus implemented. Simulations were performed for various 
input voltages. 

Figure 5: Comparison of the damping moment between full 
and reduced order models. 

5 EXPERIMENTAL RESULTS 

Measurements on fabricated devices have been 
compared with simulations (Fig. 6). The results are in good 
agreement, thus demonstrating the validity of the model. 

Figure 6: Measured and simulated capacitance change for 
an input step of 8 and 9 volts. 

6 CONCLUSIONS 

As demonstrated, MEMS devices can generally be 
modeled with Finite Differences. Even the motion of very 
complex geometries is adequately described by one 
translation – perpendicular to the gap – and two rotational 
movements.  

The full-system can be simulated with this approach. 
The capability of automatic generation of reduced-order 
models is another advantage of the proposed model. As 
shown in Fig. 5, a simple spring-damper network presents 
the same behavior of the modified Reynolds equation. This 
may lead to a fast development time in the design phase, 
and also to a much better understanding of the full 
dynamics of complex MEMS structures. 
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