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ABSTRACT

The BSIM3/4 compact models have been widely used in
the microelectronic industry over the past decade. As the
technology scale down achieved the 0.09µ limit, the
complexity of the compact models and their parameter
extraction has increased incredibly. It has been clearly
recognized that the automated parameter extraction
methodology can be beneficial for both semiconductor
foundries and IC design houses. In this work we report the
first successful automatic extraction of BSIM3/4 model
parameters based on the numerical optimization of a function,
which includes penalty functions. The reported algorithm is an
extension of ISE simulator ISExtract [1].

Keywords: BSIM3, BSIM4, parameter extraction, penalty
function.

1 INTRODUCTION

Numerical optimization algorithms, and, in particular, the
Levenberg-Marquardt algorithm have been commonly used in
compact model parameter extraction. This algorithm, invented 
almost 60 years ago [2] and improved 20 years later [3], has a 
few known deficiencies, such as poor convergence without a
good starting point for minimization, and significant
numerical difficulties to solve large dimensional optimization
problems. The limited numerical capability of optimization
procedures was one of the reasons why commonly used
extraction procedures consist of a sequence of many extraction 
steps, where each of them is a local optimization, or a direct
extraction step. The BSIM3/4 compact models have more than 
300 parameters (if to account for binning parameters as well),
and describe the complicated physics of micro- and nano-scale
devices. Both the complexity of the models, and the deficiency
of the optimization procedure, lead to extremely complicated
extraction strategies, and even extraction experts have
difficulties sometimes to achieve acceptable results.

To overcome this stalemate, new interest has recently
arisen around the global optimization methodology for model
parameter extraction. Watts et al. [4] have successfully applied
the Genetic Algorithm for BSIM3 model parameter extraction. 
They concluded, in particular, that this optimization technique
sufficiently reduced the engineering effort to develop a model
card, and at the same time improved the model quality. Our
current work also uses a global optimization approach. Our
numerical algorithm is based on the quasi-newton approach,
and demonstrates good convergence with a large number of
optimization parameters. The main details of the approach

have been reported in [5], where the method has been
applied for BSIM3 model parameter extraction.

Besides numerical issues, the global optimization
approach has another well-known problem: as a rule, the
solution of the problem is not unique, which may lead to
nonphysical values of extracted parameters.  In traditional
extraction methodologies this problem is often solved by
direct extraction (not optimization!) of such parameters
from physically appropriate sets of data. In our global
optimization approach this problem is solved by the
introduction of penalty functions, which keep values of
extracted parameters within feasible range. Note, that
because of the power of the optimization algorithm, the
penalty functions did not really worsen the overall
convergence of the optimization procedure.

2 OBJECTIVE FUNCTION

A well chosen objective function has a big impact on
the quality of the obtained model parameters as well as on
the success of the extraction process itself. The agreement
between the measured and simulated data is measured by
the objective function. Normally, the root mean square
function (RMS) is used as the objective function for model
parameter extraction:
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where the sum is over all measured data, measId and simId

are measured and simulated (using appropriate compact
model) drain currents, respectively. It is clear, that such
optimization problems often might have a few, and
sometimes, even an infinite number of solutions. Let us
consider a simple example: the threshold voltage
parameters dtvt0, dvt1, and dvt2, are responsible for the
short channel effect and enter into the expression for Vth as 
dvt0*f(dvt1, dvt2). If, for some reason, during the
optimization process, the value of dvt0 becomes equal to
zero, then dvt1 and dvt2 may have arbitrary values, and will
never affect the value of the objective function. Therefore,
the optimization task has an infinite number of solutions in
the two dimensional hyperplane, dvt1*dvt2. Due to the
complexity of the BSIM3/4 models, and, hence the
complexity of the objective function, the N dimensional
optimization problem, in general, may have an infinite
number of solutions in the K dimensional hyperspace,
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where K < N. In other words, the RMSF  function gives too

much freedom to the parameters which have to be optimized.
In order to overcome the above difficulties, and to keep the 

values of the parameters inside the desired intervals, we use
the penalty functions approach. The contribution of the
penalty functions to the objective function has been used in
the following form:
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where the first sum is over all penalties, the second sum over

all data, nf  is a normalization factor, x  is a model parameter 

or an internal model variable, and 0x is the boundary of the

feasible interval of x .
The total objective function is defined as the sum of (1)

and (2):

PENRMS FFF += (3)

3 EXAMPLES OF PENALTIES

Based on the physical and mathematical properties of the
models, we introduce 49 penalties for the BSIM3 model and
66 penalties for the BSIM4 model. Because of limited space
we can not describe each of these penalties, and we will
narrow our discussion by considering a few examples.

Both BSIM3 and BSIM4 models impose a hard restriction
on the value of the dvt1 parameter: if dvt1 < 0, the models
terminate with a fatal error. This problem can be solved easily
by imposing a linear constraint dvt1>0. However, it becomes
more difficult to impose just such a rigid constraint if binning
parameters for dvt1 have to be found as well: then dvt1 is
already a function, and some restriction has to be imposed on
this function. So, first of all, a smoothing function is used for
dvt1 to avoid negative value, and, in addition, the following
penalty function is introduced:
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×<dvt . Here 1dvtnf is the normalization factor for 

the dvt1 parameter.
The above example shows, how a penalty function is

applied to the model parameters. Similar expressions are used
for imposing penalties on internal model variables. Let us

consider, for example, an effective mobility model effµ ,

which can be written as:

Denomi
eff

0µµ = (5)

where 0µ is the low field mobility, and Denomi is a

function of terminal voltages and more then 100 model
parameters, including binning parameters, and describes the 
mobility degradation due to high electric field. If we want

to impose a ADenomi > restriction on the value of
Denomi, then the appropriate penalty function will have the 
following form:

( )2)( DenomiAnfDenomiF DenomiPEN −= (6)

if ADenomi < , where Denominf is the normalization

factor for Denomi. The value of A can be chosen from
numerical considerations, as it is done in the original
BSIM3 model (A=0.2). We believe, that from the physical
point of view, A=1 is a more appropriate value for silicon
technology, and has been used in our simulations.

4 AUTOSELECTION OF BINNING

PARAMETERS

It is well known that without binning the BSIM3/4
models can not provide the required accuracy to model
modern technologies for various device sizes. There are no
general rules or recommendations on how to choose an
optimal set of binning parameters. Often the choice is based
on previous experience, and is a very time consuming
process as well. To automate the selection process, a
procedure called “Autoselection of binning parameters” has
been developed. The idea of autoselection is schematically
illustrated in Fig.1. The procedure starts from the sub-
optimization tasks (one-bin parameter optimization). For
each parameter selected for extraction, it solves three two
dimensional optimization tasks: 1) parameter plus length
dependence binning parameter, 2) parameter plus width
dependence binning parameter, and 3) parameter plus
cross-term dependence parameter. Therefore three values of 
the objective function will be calculated for one parameter.
After execution of all sub-optimization tasks, the 3N values
of objective function are computed, where N is the number
of non-binning model parameters. By selecting the
minimum component of this vector, we assume, that the
appropriate binning parameter is chosen. At the next step
the full optimization over all non-binning parameters and
the selected binning parameters is performed. The
convergence criteria are checked after the full optimization
procedure; if they are not satisfied, the procedure is
repeated until convergence is reached. 

5 PARAMETER EXTRACTION

Typically, the parameter extraction process begins by
setting each parameter value to their “best guess” or
“desired” value. In order to fit a set of simulated curves to
measured data, a series of local optimization steps is
performed. Each optimization step attempts to improve the
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fitting quality of some subset of measured data by adjusting a
small number of model parameters dominated on this subset of 
data. This is the ideal case, but in reality, due to the
complicated physics of sub-micron devices, an interaction of
different physical effects is present for any subset of measured 
data and therefore, the fitting quality depends not only on the
model parameters selected for local optimization, but on other 
model parameters, which have the initial values or values
extracted before. These difficulties lead to the well-known
problem of sequential extraction strategies. In contrast, good
optimization algorithms can optimize many or even all model
parameters, but still it is crucial to choose a good initial guess. 
It is well known in practical optimization, that the model
parameters can be divided into two groups: the first group
contains “work horse” parameters, and the second one – the
“ambitious” parameters. The “work horse” parameters are
very critical for the successful optimization of the objective
function and are easier to estimate. The “ambitious
parameters” are less important and/or are more nonlinear and
hence harder to estimate. In such cases, it is very useful first to 
fix the “ambitious parameters” to their default values in order
to obtain good initial values for the “work horse” parameters,
and then rerun the optimization with all model parameters
using these starting values.

Based on the above arguments, our extraction strategy can
be summarized as following. First, we execute a sequential
extraction strategy for “work horse” parameters. Second, we
optimize the “work horse” parameters over all measured data.
The next step is an optimization of all model parameters,
“work horse” and “ambitious parameters”, over all measured
data. And if the fitting quality is not good enough, the
autoselection of binning parameters procedure can be
executed.

6 RESULTS

The new objective function (3) has been used to extract the 
BSIM3/4 model parameters for three different technologies.
The BSIM3 model parameters were extracted for High-
Voltage 0.13µ technology, using available measured data for
21 devices with different geometry size. The “model” card
was extracted at the foundry using commercial extractors.
From the same measured data the “new model” card was
obtained using the proposed penalty function approach. A few
problems have been discovered in the “model” card, one of
them is illustrated in Fig. 2: the simulated Gmb becomes
negative when the channel length scales down. Due to a
penalty for negative Gmb, the same curves obtained using the 
“new model” card (Fig. 3) do not show this wrong behavior.

The penalty function approach was also successfully
applied to solve similar problems in BSIM4 model parameter
extraction. For a new 0.09µ technology, the measurements of
22 devices were available. Again, the “model” card and “new
model” card were either provided by the foundry, or extracted
using our new approach. A comparison of Gmb for the
“model” and “new model” card is shown in Fig. 4: the
“model” card Gmb becomes negative when Vb is below -

1.5V, which may lead to bad convergence of circuit
simulators. To overcome this problem, the idea from [6]
was applied. In addition to measured data, we append a set
of dummy points with terminal voltages up to two times
higher than the normal operating voltage. For these dummy
points we do not optimize the drain current, and just keep
under control the penalty functions. As a result, in the “new 
model” card Gmb is positive within twice the range of the
operating voltages. The effect of the penalty function
approach on internal BSIM4 variables is shown in Fig. 5,
where an effective mobility derivative over bulk voltage is
plotted. By introducing a penalty function which allows
only positive values of this derivative, we guarantee
appropriate (physically correct) results during extraction. 

To illustrate the global fitting quality of the proposed
extraction techniques, Table 1 shows the RMS error
calculated using formula (1) and the maximum errors,
obtained for a standard 0.18µ technology with a BSIM4

model for the current range from
1010−

A to the maximum
current. We believe that achieving such a good quality is
impossible without using a method of numerical
optimization with penalty functions.

7 CONCLUSION

A newly developed penalty function approach was
applied to BSIM3/4 model parameter extraction. The
penalty functions always keep the values of the model
parameters within their physical range without manual
tuning and human influence on the extraction procedure. It
offers the possibility to get a high quality model card within
a short time.
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Fig. 1: Autoselection of binning parameters.

Fig. 2: The “model” card Gmb vs. Vd for different channel
length.

Fig. 3: The “new model” card Gmb vs. Vd for different
channel length.

Fig. 4: Gmb vs. Vb at Vg-1.0V, Vd=1.1V

Fig. 5:
Vb

eff

∂

∂µ
 vs. Vg at Vd=0.05V and different Vb

Device RMS (%) MAX (%)

Large 1.6257 3.9397
Short1 1.9632 3.4686
Short2 0.9823 2.5600
Short3 2.4188 4.3845
Short4 2.8921 4.4679
Short5 3.2378 10.0014
Short6 1.6462 3.8046
Small 0.6841 1.3305
Narrow1 1.2388 3.5137
Narrow2 2.4042 4.9862
Narrow3 1.1989 3.2683
Narrow4 1.9566 2.8352
Narrow5 1.2715 3.5191

Table 1: RMS and maximum errors of IdVg curves at low
Vd and Vb=0 for different devices.
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