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ABSTRACT

The thermal relaxation of isolated (single layer) ho-
moepitaxial islands and craters and of isolated nano-
mounds is simulated using a 2+1 dimensional step flow
model. Numerical simulations based on adaptive finite
elements are used to study the decay rates of these
structures in the diffusion limited and the attachment-
detachment limited regime under the influence of aniso-
tropic effects.
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1 INTRODUCTION

Since many nanometer structures are easy to relax
at high temperatures, a quantitative understanding of
the thermal relaxation of nanostructures is important
for the development of nanometer fabrication. In [1],
[2] the decay of silicon hillocks, craters and mounds on
a Si(111) surfaces is measured by scanning tunneling
microscopy. These experiments clearly show a discrete
single layer mode of the decay as well as several scaling
exponents for the decay rates. Theoretical studies of
such a decay were until now restricted to either purely
periodic or rotational symmetric settings [3], [4]. We will
extend this work to full 2+1 dimensional situations and
simulate decay rates in an anisotropic setting.

The goal of our work is to establish an efficient and
accurate framework for simulating decay processes. Most
approaches to the simulation of nanostructure decay are
based on phenomenological models treating the crystal
surface as a continuous height function and ignore the
discrete nature of surface steps. Our approach – based
on a step-flow model – allows a more detailed description
of the surface evolution and also the direct incorpora-
tion of important microscopic effects such as the Ehrlich
Schwoebel barrier, step edge diffusion, step-step inter-
actions and line tension. Still the model allows – much
more then purely microscopic models – efficient simula-
tions over a long time scale, where thermal relaxation
takes place.

An adaptive finite element framework for these class
of problems has been developed by the authors in [5],

[6]. The step flow model consists of an adatom (ad-
sorbed atom) diffusion equation on terraces of different
height; boundary conditions on terrace boundaries in-
cluding anisotropic line tension and the kinetic asym-
metry in the adatom attachment and detachment; and
the normal velocity law for the motion of such bound-
aries determined by a two-sided flux, together with the
(possibly anisotropic) diffusion of edge-adatoms along
the step-edges.

After describing the model and the numerical algo-
rithm, the method is shown to be accurate and efficient
for the numerical simulation of attachment/detachment-
limited (AL) and diffusion-limited (DL) cases. The in-
fluence of different attachment rates on the decay of
single-layer islands (or craters) is investigated. As a
numerical benchmark, we compare our fully 2+1 dimen-
sional simulation of the decay of a concentric rotational
symmetric crystalline cone with an ODE simulation also
recovering the well known t1/4 decay law, see [3]. The
simulation of the decay of a nanomound with anisotropic
line tension agrees qualitatively with experiments shown
in [2].

2 STEP FLOW MODEL

We denote by Ω ⊂ R
2 the projected domain of the

film surface and assume that Ω is independent of time
t. Moreover Ω0 = Ω0(t) ⊂ Ω denotes the projected do-
main of the substrate or the exposed film surface with
the smallest layer thickness and Ωi = Ωi(t) ⊂ Ω, i =
1, . . . , N , the projected domain of the terrace of height i
at time t, respectively. Thus, N + 1 is the total number
of layers that are exposed on the film surface. The cor-
responding steps are denoted by Γi(t) = Ωi(t)∩Ωi−1(t),
i = 1, . . . , N . Denote by ρi = ρi(x, t) the adatom den-
sity on terrace Ωi(t) (i = 0, . . . N) at time t. The adatom
diffusion on a terrace is described by the diffusion equa-
tion for the adatom density

∂tρi −∇ · (D∇ρi) = F − τ−1ρi in Ωi(t), (1)

where D > 0 is the surface diffusivity, F ≥ 0 is the
deposition flux rate, and τ−1 ≥ 0 is the desorption rate.
Throughout the paper the unit of length will be the
substrate lattice spacing a. Thus the adatom density
ρ denotes the number of adatoms per adsorption site.
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Now let j+
i , j−i be the adatom flux at the boundary Γi

from the upper and lower terrace, respectively, which
are given by

j+
i := −D∇ρi · �ni − viρi (2)

j−i := D∇ρi−1 · �ni + viρi−1, (3)

where �ni and vi are the unit normal pointing from the
upper to the lower terrace and the normal velocity of the
step Γi(t), respectively, with the convention that vi > 0
if the movement of Γi(t) is in the direction of �ni.

Assuming the attachment/detachment limited case,
the adatom density satisfies the following kinetic bound-
ary conditions on the island boundary Γi(t)

j+
i = k+(ρi − ρeq

i ), (4)

j−i = k−(ρi−1 − ρeq
i−1), (5)

where ρeq
i is the equilibrium density at Γi. Here we

assume that the steps are non permeable, i.e. there is no
adatom diffusion across a step that bypasses attachment
to the step. Permeability may be built into the model
by adding a term being proportional to ρi − ρi−1 to the
fluxes at the steps.

With this notation 0 < k+ < k− models the Ehrlich-
Schwoebel effect. If k+, k− → ∞, i.e. the diffusion lim-
ited case, Eqs. (4) and (5) pass into the thermodynamic
boundary condition

ρi = ρi−1 = ρeq
i .

The equilibrium adatom density ρeq
i is described by

the Gibbs-Thomson-type relation

ρeq
i = ρ∗ exp

( µ

kBT

) ≈ ρ∗(1 +
µi

kBT
), (6)

where µi is the anisotropic chemical potential of the
boundary Γi, being given as the first variation of the step
free energy, and ρ∗ is a positive constant denoting the
thermodynamic equilibrium density at a straight non in-
teracting step. If γ denotes the orientation dependent
step free energy divided by kBT , and

γ̃(θ) = γ(θ) + γθθ(θ),

with θ the angle of the outer normal with the x-axis, we
obtain

µi

kBT
= γ̃κi, i.e., ρeq

i = ρ∗(1 + γ̃κi), (7)

where κi is the curvature of the boundary Γi(t). To
model step-step interaction, a force term is added to
the chemical potential µi (i.e. the normal derivative
of a step interaction potential being part of the step
free energy). Assuming, that the steps are interacting
via elastic repulsion a nearest neighbor potential being

inversely proportional to the average distance of neigh-
boring steps as in [3] is used.

For the motion of the steps, we assume the following
law for the normal velocity vi of the island boundary
Γi(t)

vi = j+
i + j−i + ∂s(ν∂s(γ̃κi)), (8)

where ν is a positive function denoting the (orientation
dependent) mobility of the edge diffusion, and ∂s de-
notes the tangential derivative along the steps. The last
term in Eq. (8) represents step edge diffusion of edge-
adatoms along the steps, whereas the first two terms
ensure the adatom mass conservation.

In order to study the decay rates, small islands are
placed on a large exposed film surface Ω0. The boundary
of Ω0 is modeled as a fixed step. This leads to Robin
type conditions for the adatom density at the domain
boundary which ensures a realistic comparison with the
experimental results.

For a circular, isolated monolayer island the radius
decays approximately as R(t) ≈ t1/3 in the diffusion
limited case and as R(t) ≈ t1/2 in the attachment/de-
tachment limited case. This was already shown in rota-
tional symmetric setting in [4] and follows from a quasi-
stationary approximation of (1) with F = τ−1 = 0. For
k = k+ = k− and j+

0 = k(ρ0 − ρ∗), this yields

Ṙ = −ρ∗γ̃k

R

1/R

(1/R + 1/R0) + k/D ln(R0/R)
, (9)

with R0 � R being the radius of Ω0. In the attach-
ment/detachment limited case (k/D → 0) this leads to
Ṙ ≈ −R−1 and in the diffusion limited case (k/D → ∞)
to Ṙ ≈ −R−2, implying the described decay rates.

3 DISCRETIZATION

We shortly review the weak formulation and finite
element discretization as introduced in [5], [6]. In each
time step: (i) we update the discrete step boundaries by
solving a geometric partial differential equation based
on the adatom densities and the discrete step bound-
aries from the previous time step; (ii) we solve the diffu-
sion equation to update the adatom densities using the
adatom densities from the previous time step and the
computed discrete representation of the steps.

3.1 Boundary evolution

We describe the discretization without step-step in-
teraction. The incorporation of the latter is straight for-
ward by modifying the chemical potential as described
above. Using the boundary conditions Eqs. (4) and (5)
at Γi(t) in the velocity formula Eq. (8) leads to the ge-
ometric PDE

vi = γi + βγ̃κi + ∂s(ν∂s(γ̃κi)), (10)
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with γi = k+(ρi − ρ∗) + k−(ρi−1 − ρ∗) and β = (k+ +
k−)ρ∗. This equation can be interpreted as an equa-
tion for anisotropic (one dimensional) “surface” diffu-
sion with lower order terms. A variational formula-
tion and discretization using parametric finite elements
is obtained as follows. Introducing the position vector
�xi, the curvature vector κi = �κi · �ni, and the velocity
vector �vi = vi�ni, and using the geometric expression
�κi = −∂ss�xi, Eq. (10) becomes equivalent to the follow-
ing system of equations for �κi, κi, vi, and �vi.

�κi = −∂ss(�xi), (11)
κi = �κi · �ni, (12)
vi = γi − βγ̃κi + ∂s(ν∂s(γ̃κi)), (13)
�vi = vi�ni. (14)

Considering discrete time steps ∆t, the boundary at
time t + ∆t is represented in terms of the boundary at
time t by updating the position vector �xi ← �xi + ∆t�vi.
Plugging the updated position vector into Eq. (11) and
multiplying Eqs. (11) - (14) with test functions ψ and �ψ
leads to the following weak formulation:∫

Γi

�κi
�ψ − ∆t

∫
Γi

∂s�vi · ∂s
�ψ =

∫
Γi

∂s�xi · ∂s
�ψ,

∫
Γi

κiψ −
∫

Γi

�κi · �niψ = 0,

∫
Γi

viψ +
∫

Γi

ν∂s(γ̃κi) · ∂sψ +
∫

Γi

βγ̃κiψ =
∫

Γi

γiψ,

∫
Γi

�vi
�ψ −

∫
Γi

vi�ni
�ψ = 0.

The system is now discretized using parametric finite el-
ements. Note that in the above formulation, the adatom
densities ρi and ρi−1 on the upper and lower terraces,
respectively, are needed only for computing γi. Solving
the resulting linear system on each boundary yields the
new boundary. These new boundaries, together with
their curvatures will enter in the next time-step for the
adatom diffusion.

3.2 Adatom diffusion

We now shortly discribe the discretization of the
adatom diffusion equation in the attachment limited
case without step permeability. For the discretization of
the diffusion limited case, a slightly different approach
based on a penalty method is used, see Ref. [6]. Multi-
plying Eq. (1) by a test function φ and integration by
parts leads to∫

Ωi

∂tρiφ +
∫

Ωi

D∇ρi · ∇φ

+
∫

Γi+1

D∇ρi · �ni+1φ −
∫

Γi

D∇ρi · �niφ

=
∫

Ωi

Fφ −
∫

Ωi

τ−1ρiφ.

For each i this equation is extended to the whole time-
independent domain Ω by setting ρi, Di, Fi, τ

−1
i = 0

outside of Ωi. Taking account of the distributional time-
derivatives of ρi at the steps, denoted by ρ̇i, and using
the boundary conditions Eqs. (4) and (5) we obtain
∫

Ω

ρ̇iφ +
∫

Ω

Di∇ρi · ∇φ

+
∫

Γi+1(t)

k−(ρi − ρ∗(1 + γ̃κi+1))φ

+
∫

Γi(t)

k+(ρi − ρ∗(1 + γ̃κi))φ

=
∫

Ω

Fiφ +
∫

Ω

τ−1
i ρiφ. (15)

Notice, that for the derivation of Eq. (15) the convective
terms in Eqs. (4) and (5) are essential. Since Eq. (15)
is solved for each ρi on the whole domain, there are two
degrees of freedom at each boundaries Γi(t), namely ρi

and ρi−1. This way the discontinuity in the adatom den-
sity at the steps can be resolved. Eq. (15) is discretized
using an implicit Euler discretization in time and linear
finite elements in space. An adaptive strategy is used
in order to refine the numerical mesh close to the step
edges.

4 Numerical results

Simulating the decay of nanostructures requires large
time-scales. For the algorithm to be efficient it is in-
dispensable to use adaptivity in time. We chose the
time step depending on the maximal velocity of the step
boundaries. If not otherwise stated, the parameters are
D = 105, τ−1 = 0, γ = 0.1 and ρ∗ = 10−4.

4.1 Decay of single layer islands and
craters

The decay of monolayer islands (or craters) with ini-
tial area 100π on a substrate of 600 × 600 is simulated.
In the isotropic case, the initial island boundary is a cir-
cle and in the anisotopic case it is the Wulff shape of the
anisotropy function γ(θ) = 0.1+0.01 cos(3θ), see Fig. 1.

Figure 1: Adaptively refined two-dimensional mesh and
1d island boundary in the anisotropic case.
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Figure 2: Decay of single layer island: linear decay for
low attachment rate k (top), attachment limited decay
with increasing k and diffusion limited decay

As shown in Fig. 2(top), the decay for a small attach-
ment/detachment rate k (k/D = 10−3) becomes linear.
With increasing k, the decay curves approximate the
diffusion limited case, see Fig. 2(bottom). Desorption
has a very small effect on the decay rates (we used a
desorption rate of τ−1 = 10−4). The anisotropy does
not change the qualitativ picture of the decay rates but
slows down the decay process.

4.2 Decay of isolated nanomounds

A comparison of a 2+1 dimensional simulation of
the decay of a circular cone with 15 layers with the ro-
tational symmetric ODE solution shows acurate quan-
titative agreement including a decay rate of t1/4 of the
top island radius as in [3] (not shown here). Here we
present the simulation of the decay of an anisotropic
mound with 12 atomic layers. The inital shape of the
top terrace of the pyramid is nearly hexagonal, while the
shape at the bottom is a rounded triangle and we use
an anisotropy γ with hexagonal symmetry. Fig. 3 shows
the discrete height profile of the mound during decay.
As can be seen, the bottom layer becomes a rounded

Figure 3: Anisotropic decay of a nanomound on a sub-
strate of size 200 × 200 (in units of lattice constant).
Discrete heights at time = 12, 65, 476, 1330 seconds.
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Figure 4: Layer by layer decay of the nanomounds with
12 atomic layers as in Fig. 3

hexagon. In Fig. 4 the layer by layer decay is shown.
The setting is chosen similar to the experimental de-

cay of Si mounds studied in [2] and shows qualitative
agreement with their results.
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