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ABSTRACT

The paper presents an algorithm and a program for
the computation of the velocity of acoustic waves ex-
cited in anisotropic multi-layered structures. The inves-
tigation is motivated by modeling of a biosensor which
serves for the detection and quantitative measurement of
microscopic amounts of biological substances. The pro-
gram is supplied with a user friendly graphical interface
and can be useful for researchers working on acoustic
sensors.
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1 INTRODUCTION

The paper outlines an algorithm and a program for
the computation of the velocity of acoustic waves ex-
cited in anisotropic multi-layered structures. In contrast
to acoustic waves in bulk materials, the wave velocity in
laminate structures depends on the frequency because of
the interaction between the layers with different acoustic
properties. Therefore, one can speak about dispersion
relations that express the connection between the veloc-
ity and the frequency of acoustic waves.

The investigation of dispersion relations is motivated
by the modeling of a biosensor [1] that serves for the
detection and quantitative measurement of microscopic
amounts of biological substances. The operating prin-
ciple of the biosensor is based on the generation and
detection of horizontally polarized shear Love waves.
From the mechanical point of view, the biosensor is a
multi-layered structure consisting both of isotropic and
anisotropic layers. The biological substance adheres to
the surface of the top layer so that a new layer is being
formed, which changes the velocity of shear waves prop-
agating along the sensor’s surface. Thus, an effective
tool for computing the velocity of waves in multi-layered
structures would enable us to estimate the sensitivity of
the biosensor in dependence on its constructive features
and operation parameters.

Classical examples of the derivation of dispersion re-
lations demonstrate that the problem is solvable ana-
lytically in simplest cases only (see e.g. [2]). There-
fore, it is reasonable to examine semi-analytical meth-

ods that use both analytical representations of solutions
and numerical determination of their parameters. Such
a method and the related program are developed by the
authors. The algorithm is based on the construction
of travelling wave solutions of elasticity equations de-
scribing deformations in the layers. The wave velocity
is computed from the fitting of mechanical conditions
on the interfaces between the layers. These conditions
express the continuity of the displacement field and the
pressure equilibrium for each pair of the layers. Feasi-
ble wave velocities are the roots of a non-negative real
function (fitting function) that expresses a measure of
the inconsistence in the interface conditions. Comparing
with other existing developments (e.g. [3]) our program
is especially effective in the case of very thin layers.

2 MATHEMATICAL MODEL

2.1 Simple structure

First, consider a simplified structure shown in Fig-
ure 1. Here, an anisotropic layer lies on an anisotropic
half-space substrate. The fluid is not present in the
model. The computation of the velocity of surface acous-
tic waves is based on the construction of travelling wave
solutions that exponentially decrease with x3.
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Figure 1: A sample structure. Here, ρ̂, ρ, and Ĉijkl,
Cijkl are the densities and the elastic stiffness tensors,
respectively.

The elasticity equations for the substrate and the top
layer read:

ρui tt − Cijkl
∂2ul

∂xj∂xk
= 0, i = 1, 2, 3, (1)

ρ̂ûi tt − Ĉijkl
∂2ûl

∂xj∂xk
= 0, i = 1, 2, 3, (2)
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where ui and ûi, i = 1, 2, 3, are components of the dis-
placement vectors. A plain wave propagating in the
structure in x1 direction is of the form:

ui(x1, x3) = ai(x3) cos(κx1 − ωt)+
bi(x3) sin(κx1 − ωt), (3)

ûi(x1, x3) = âi(x3) cos(κx1 − ωt)+

b̂i(x3) sin(κx1 − ωt). (4)

Here, κ is the wave number, ω the circuit frequency. The
substitution of (3) and (4) into (1) and (2), respectively,
yields

−Ci33l äl − (Ci13l + Ci31l) ḃl + Ci11l al − ρ
ω2

κ2
ai = 0,

−Ci33l b̈l + (Ci13l + Ci31l) ȧl + Ci11l bl − ρ
ω2

κ2
bi = 0,

−Ĉi33l
¨̂al − (Ĉi13l + Ĉi31l)

˙̂
bl + Ĉi11l âl − ρ̂

ω2

κ2
âi = 0,

−Ĉi33l
¨̂
bl + (Ĉi13l + Ĉi31l) ˙̂al + Ĉi11l b̂l − ρ̂

ω2

κ2
b̂i = 0.

Here, i = 1, 2, 3, the dot denotes the differentiation with
respect to the variable x̃3 = κx3. With the state vectors

�q = (a1, a2, a3, b1, b2, b3, ȧ1, ȧ2, ȧ3, ḃ1, ḃ2, ḃ3)T ∈ R12,

�̂q = (â1, â2, â3, b̂1, b̂2, b̂3, ˙̂a1, ˙̂a2, ˙̂a3,
˙̂
b1,

˙̂
b2,

˙̂
b3)T ∈ R12,

the above systems can be rewritten in the normal form
as follows:

�̇q = A�q,
˙̂
�q = Â �̂q, (5)

where A and Â are the corresponding matrices. Let
λ1, ..., λ12 and �h1, ...,�h12 (respectively, λ̂1, ..., λ̂12 and
�̂h1, ..., �̂h12) be eigenvalues and eigenvectors of A (re-
spectively, Â). One can verify that just � linear inde-
pendent eigenvectors can be found for each �-multiple
eigenvalue. Therefore, solutions of (5) are of the form:

�q(x3) =
∑12

i=1 Di
�hie

λiκx3 , �̂q(x3) =
∑12

i=1 D̂i
�̂hie

λ̂iκx3 ,
where Di and D̂i are arbitrary constants. Selecting so-
lutions decreasing in the substrate yields:

�q(x3) =
N∑

j=1

Dj
�hij

eλij
κx3 , Re λij

> 0.

Note that N ≤ 6 due to the up-down symmetry of the
substrate. Solutions in the upper layer are assumed to
be of the oscillatory type:

�̂q(x3) =
L∑

j=1

D̂j
�̂hij

eλ̂ij
κx3 , Re λ̂ij

= 0.

Thus,

al =
N∑

j=1

Djh
(l)
ij

eλij
κx3 , bl =

N∑
j=1

Djh
(l+3)
ij

eλij
κx3 ,

âl =
L∑

j=1

D̂j ĥ
(l)
ij

eλ̂ij
κx3 , b̂l =

L∑
j=1

D̂j ĥ
(l+3)
ij

eλ̂ij
κx3 ,

where l runs from 1 to 3. Therefore, the displacements
ui and ûi, see (3) and (4), depend linearly on Dr, r =
1, N, and D̂s, s = 1, L, respectively.

For all x1 and t, the following interface conditions
must hold:

ui = ûi, at x3 = 0, continuity; (6)

Ci3kl
∂ul

∂xk
= Ĉi3kl

∂ûl

∂xk
, at x3 = 0, equilibrium

of pressures;
(7)

Ĉi3kl
∂ûl

∂xk
= 0, at x3 = h, free of forces

boundary.
(8)

The above system yields 18 linear equations for N +L ≤
18 coefficients Dr and D̂s. Note that N + L < 18
as a rule. Let V = ω/κ be the unknown wave veloc-
ity and G(V ) the 18 × (N + L)-matrix of the above
system. Feasible wave velocities are determined from
the condition of nontrivial solvability for the system
G(V ) �D = 0, where �D = (D1, ...DN , D̂1, ...D̂L)T . Thus,
the condition rank G(V ) < N + L holds for the feasible
velocities, which is equivalent to the following condition:
det

∣∣ḠT (V )G(V )
∣∣ = 0. The last equation can be eas-

ily solved because the computation of the left-hand-side
runs very quickly even on an ordinary computer. Usu-
ally, three roots are being found whenever the layers are
sufficiently thin, which corresponds to three wave types
that propagate with different velocities. The selection
of the desired wave type is quite obvious because the
relation between their velocities is usually known.

2.2 Introducing a fluid

Assume now that the surface of the top layer of
the structure shown in Figure 1 contacts with a vis-
cose, weakly compressible fluid. The Stokes equations
for compressible viscous fluids read:

�vi t − ν∆vi − (ζ +
ν

3
)

∂

∂xi
div�v +

∂

∂xi
p = 0,

�t +
∂

∂xi
(�vi) = 0,

where � is the density of the fluid, vi, i = 1, 2, 3, are
components of the velocity field, p is the static pressure,
ν and ζ are the dynamic and volume viscosities of the
fluid, respectively. The weak compressibility means that

�(p) ≈ �0 + α · p, �0 = �(0), α =
∂�

∂p
(0),

which yields the following linearized equations:

�0vi t − ν∆vi − (ζ +
ν

3
)

∂

∂xi
div�v +

∂

∂xi
p = 0, (9)
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αpt + �0
∂

∂xi
vi = 0. (10)

Similar to the case of section 2.1, consider plain waves
propagating in the fluid in x1 direction:

vi(x1, x3) = ci(x3) cos(κx1 − ωt) + di(x3) sin(κx1 − ωt),
p(x1, x3) = e(x3) cos(κx1 − ωt) + f(x3) sin(κx1 − ωt).

Substituting this ansatz in (9) and (10) results in a sys-
tem of linear ordinary differential equations for the de-
termination of the amplitudes ci(x3), di(x3), i = 1, 2, 3,
e(x3), and f(x3). The amplitudes are being represented
as linear combinations of exponents with arbitrary co-
efficients. The matching conditions at the interface be-
tween the fluid and the elastic layer consist in the conti-
nuity of the velocities and the equilibrium of the normal
pressures:

vi =
∂

∂t
ûi, (11)

Ĉi3kl
∂ûl

∂xk
= −pδi3 + ν

(
∂vi

∂x3
+

∂v3

∂xi

)
+ (ζ − 2

3
ν)δi3 div�v.

(12)

These relations replace equation (8) of the system
(6)–(8). The system (6), (7), (8), (11), (12) is being
treated as that is described in section 2.1.

2.3 Introducing piezoelectricity

Acoustic waves are usually excited through piezoelec-
tric materials like α-quartz. Such materials can trans-
form electric fields into deformations and vice versa so
that deformations have influence on themselves through
the electric field. Therefore, the propagation of waves
depends on piezoelectric and electric properties of the
layers. To explain how the piezoelectric effects can be
taken into account, consider the following simple struc-
ture: I. Piezoelectric layer, II. Dielectric layer, III. Metal-
lic layer. Because of small deformations, linear consti-
tutive relations for piezoelectric materials are used:

σij = Cijklεkl − ekijEk, Di = εijEj + eiklεkl.

Here, σij and εkl are the stress and strain tensors, re-
spectively; Di and Ei denote the electric displacement
and field, respectively; εkl, ekij , and Cijkl denote the
material dielectric tensor, the stress piezoelectric ten-
sor, and the elastic stiffness tensor, respectively.

Let φ be the potential function such that Ei = ∂φ/∂xi,
then the governing equations derived from the above
constitutive relations read:

ρIuI
i tt − CI

ijkl

∂2uI
l

∂xj∂xk
+ eI

kij

∂2φI

∂xk∂xj
= 0,

εI
ij

∂2φI

∂xi∂xj
+ eI

ikl

∂2uI
l

∂xi∂xk
= 0.

For dielectrics without piezoelectric properties, the
stress piezoelectric tensor vanishes so that the elasticity
equations and the equation determining the potential
function are decoupled:

ρIIuII
i tt − CII

ijkl

∂2uII
l

∂xj∂xk
= 0, εII

ij

∂2φII

∂xi∂xj
= 0.

Metals are purely elastic so that we have

ρIIIuIII
i tt − CIII

ijkl

∂2uIII
l

∂xj∂xk
= 0.

The conditions on the interface between the piezoelec-
tric, dielectric, and metallic layers are the following:

CI
i3kl

∂uI
l

∂xk
− eI

ki3

∂φI

∂xk
= CII

i3kl

∂uII
l

∂xk
, interface I/II

εI
3j

∂φI

∂xj
+ eI

3kl

∂uI
l

∂xk
= εII

3j

∂φII

∂xj
, interface I/II

CII
i3kl

∂uII
l

∂xk
= CIII

i3kl

∂uIII
l

∂xk
, φII = 0, interface II/III.

The technique described in subsection 2.1 can be applied
to treat this case.

3 PROGRAM DESCRIPTION

The program is supplied with a user friendly graph-
ical interface written in Visual C++. Using this inter-
face, one can compose a multi-layered structure consist-
ing of arbitrary number of isotropic and anisotropic lay-
ers. The material properties such as elastic stiffness ten-
sors can easily be set and edited. If a layer is anisotropic,
the orientation of its material is described in terms of
successive rotations of the reference system. It is pos-
sible to import material parameters from existing mod-
els, which is especially convenient when dealing with
elastic stiffness tensors containing a lot of coefficients.
After composing the structure and specifying the wave
frequency, the fitting function is computed and graphi-
cally presented (see Fig. 2). Now, the roots of the fitting
function can be localized and found precisely along with
polarization vectors that indicate the wave types. More-
over, the program possesses an option for the automatic
computation of dispersion curves (dependences between
the wave velocity and the frequency) for given frequency
intervals. Such features make the program useful for re-
searchers working on acoustic sensors.

4 EXAMPLES

Figure 3 shows a dispersion curve generated by the
program for a simple structure consisting of a half-space
isotropic substrate covered with an isotropic layer. For
such a simple structure analytical solution can be found
(see [2]). The squares mark points found analytically.
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Figure 2: The main window of the program. Roots of
the fitting function are the wave velocities for different
wave types.

Figure 3: Dispersion curve generated by the program
and points found analytically.

Figure 4 demonstrates the application of our method
to the verification of physical experiments related to a
biosensor developed at caesar [4]. A 9 nm copper film is
deposited on the top layer of the biosensor. Curve (a)
shows the time performance of the etching of the cooper
film. The water flux is being alternated with the flux
of an acid solution. The phase shift is being measured.
Curve (b) represents the phase shift computed using dis-
persion relations. The simulation proves the assumption
that the jump at the acid-to-water transition is caused
by the change of the fluid viscosity.

5 CONCLUSION AND PERSPECTIVE

The methods presented in this paper are already suc-
cessfully applied to the development of a biosensor at the
research center caesar. Now, the investigation concerns
the influence of bio-molecules deposited on the work sur-
face of the biosensor on the waves propagation. Thus,
a bristle structure consisting of the bio-molecules and
moving in the fluid should be modeled. This can be

Figure 4: Verification of physical experiments through
numerical simulations: (a) experiment, (b) simulation.

done through the homogenization technique described
in [5]. The bristle structure is replaced with an averaged
material whose properties are derived as the number of
bristles goes to infinity whereas their thickness goes to
zero. The computation of parameters of the averaged
material will be included into the program.

Sometimes, investigated structures contain very much
of periodically alternating layers whose thickness is sig-
nificantly less than the wave length. Such a sandwich
can be replaced by an averaged layer whose properties
can be derived by means of the homogenization tech-
nique. Note that the homogenization will be performed
in the transversal direction only. Therefore, explicit for-
mulas for parameters of the averaged material can be
obtain. This option will also be implemented.
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