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ABSTRACT

Numerical investigation is performed on the
electrokinetic instability mechanism of double-layered
miscible fluids in DC electric field. Nonlinear interfacial
waves as observed in flow visualization are successfully
reproduced. The mechanism is explained on the basis of 
instantaneous velocity vectors, electric field, net charge
distributions as well as concentration distributions.
Counterclockwise vortical motion is produced according to
the directions of concentration gradient and electric field. A
strong vortex at the junction of a T-channel may allow fast 
mixing in high electric field. Simulation well reproduces
the qualitative characteristics of instability, while the
threshold instability criterion is underestimated.
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1 INTRODUCTION 
Interfacial instability has recently been observed by

Chen and Santiago [1] in electroosmotic flow of two
miscible layers with different concentrations in a T-channel.
Such instability needs to be suppressed in some micro-
fluidic systems requiring stable transport with little species
dispersion [2]. On the other hand, it can be utilized to
enhance mixing of heterogeneous fluids against viscous
dissipation at an extremely low Reynolds number. This
instability was first found in a case with no mean flow 
motion by Hoberg and Melcher [3]. The difference is in the
electroosmotic flow, which leads to convective instabilities.
It has been suggested that the flow instability originates
from the polarization due to concentration gradient in
imposed electric field and the stability criterion is mapped
for the first time through linear stability analysis [4]. The
mechanism of the interfacial electrokinetic instability is
elucidated numerically by the Nernst–Planck framework of
transport equations in this study.

2 FORMULATION 
We consider time-dependent mixing of the electrolyte

layers flowing into a two-dimensional micro T-channel. The
concentrations of the two inflowing streams are denoted as

 and , in which the subscripts h  and l  represent the

high and low concentration. The electrolytes are free from
chemical reaction. For simple analysis unit activity

coefficient and uniform dielectric constant of the solution
are assumed throughout the domain. The unsteady Navier–
Stokes equation with Coulombic body force for
incompressible fluid is written as 

hc lc

2
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u
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where utDtD // , u  is velocity vector,),,( wvu
t  is time, p  is hydrodynamic pressure, is mass density
and is viscosity of fluid. E is electric field and
is electrostatic potential. The electrostatic potential  is 
related with the charge density (

e
) as 

e2 (2)

where is electric permittivity. The charge density is a 
sum of the concentrations of all species, i.e., 

e ii iF z c ,

in which i = 1 and 2 respectively denote positive ions
(cations) and negative ions (anions). c  is molar

concentration (mol/m
i

3).
The electroosmotic flow on the wall is characterized by

the Helmholtz–Smoluchowsi slip velocity given as 
. is the tangential electric field on the

wall and
tw Eu )/( tE

is the zeta potential of the wall. Here, we

exclude the flow in the electrical double layer while the 
osmotic velocity is imposed as a boundary condition on the 
wall ( ( / )t wu u ). Uniform average velocities

are assumed at both inlets of the T-channel. Conservation of
electrical charge can be written in the absence of chemical
reaction as 
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t
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in which the current density is 
i ii

F zJ . Assuming

Fickian diffusion, the flux density of each species N  is 

expressed according to the following Nernst–Planck
relation:
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where is diffusivity of ionic species (m
iD

2/s),  is the

valence of ionic species and
iz

F is the Faraday constant.
Here we introduce the electroneutrality assumption as 

0
i
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The first term in Eq. (3) is neglected on the basis of this
assumption. Equation (5) has been validated for various
electrochemical systems both numerically and
experimentally. For instance, Riveros [5] showed its
validity when 20dl

, where is the Debye length for
the dilute solution. This condition is readily satisfied for the
present system of interest, in which is normally greater
than 10

1
l

dl
2. Substituting Eq. (4) into Eq. (3), we obtain

)()( ii
i

i cDzF (6)

where

i
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Equation (6) can be rewritten as 
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Under the electroneutrality assumption, the transport
equations for positive and negative species become
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which yield the following convective-diffusion equation for
c

cD
Dt

Dc
eq

2       (10) 

eqD  is the equivalent diffusivity defined as
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We will solve Eq. (6) rather than the Poisson equation to
obtain the charge density. In general it is not a simple
problem to solve the transport equations for all species in
combination with the Poisson equation. Here with 1:1
symmetric electrolytes, the conductivity in Eq. (7) becomes
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If we replace the conductivity with the concentration by Eq.
(11), all the equations may now be written as 
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These governing equations are non-dimensionalized by
introducing the following variables:
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where t d and the characteristic velocity is taken as 

the electroosmotic Helmholtz–Smoluchowski slip velocity

( u E

/c uc

/c o
). Substituting the dimensionless variables

in Eqs. (1), (6) and (10), we obtain the following non-
dimensional equations. The overbar is dropped for brevity
of the notations.
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The dimensionless parameters are defined as
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where kT , which becomes 39V-1 for z = 1.  is 

the inverse Debye length defined as

l )0 (16)

3 RESULT AND DISSCUSSION

3.1 Mechanism of instability

By substituting the Poisson equation into Eq. (6) the
charge density is expressed as

2
i i

i

F
z D c (17)

which describes how free charges are produced. The first
term on the right-hand side is the contribution from
concentration gradient. The strength of electric field
decreases, if the current flows from high conductivity
region to the region of low conductivity as in Fig. 1(a).
Negative charges are generated to satisfy the Gauss’ law in 
the domain, while the Coulombic force acts to the left in 
this case. The conductivity gradient is reversed in Fig. 1(b)
with the electric field increasing in the current direction.
Positive charges are produced to be forced to the right in 
Fig. 1(b). The second term on the right hand side of Eq.
(17) represents the contribution from diffusivity difference
of ionic species, which is related with the liquid junction
potential. This term is usually much smaller than the first
term.

Numerical simulation is performed for the case close to 
Chen and Santiago [1]. Let us consider the case of aqueous
NaCl solution in a microchannel with the width of d = 
150 m. The electrolyte concentrations are chosen to be 

= 1 mM and c = 10 mM, respectively. Then, the zeta 

potential becomes = 55.2 mV and
h

l h
= 34.2 mV. The 

diffusivities of Na+ and Cl- ions in a dilute solution are 
m2/s and 2 m91003.

910607

2/s, respectively. Then it
follows that D  and .1eq 21.01 2

. In the

experiment the applied potential difference is from 0.5 kV
to 3.0 kV and the channel length is about 2.6 cm. The 
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electric fields Eo in the unperturbed regions of the upper
and lower branches are estimated to be from 16,025 V/m to
96,153 V/m according to the applied voltages. In the case of
the threshold voltage 0.9 kV, the estimated Helmholtz–
Smoluchowski slip velocity for each stream is u  = 1.15

mm/s and u = 0.711 mm/s, thus u = 0.93 mm/s, Re = 

0.14, Pe = 86.8, G = 1.1 10

h

l c

-3, Sc = 598, and  = 832.
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FIG. 1 Polarization due to conductivity gradient. Darkness
level indicates the concentration. 

Figure 2(a) shows the calculated concentration
distribution for a typical case. The interface pattern is 
almost identical with that observed in experiment. Figure
2(b) shows the distribution of charge density together with
the concentration distribution in solid lines. Darker regions
have dominant positive charges, while brighter regions
have dominant negative charges. The Coulombic force is
proportional to

eE  ~ . The growth of the

interface pattern can be divided into two stages according to 
the charge production mechanism. In the first stage the
species diffusion across the interface plays a crucial role. 
Molecular diffusion increases the thickness of the mixing
layer in the flow direction. The gradient, , is nonzero,
so that 

(1/ )c c E

x
becomes nonzero in the thin mixing zone.

> 0 ( < 0) at the upper (lower) part of the
mixing layer. Accordingly,

/c x /c x

e
is negative (positive) above 

(below) the center region. Since the magnitude of
e

 is 

proportional to (1 , the negative / )c in the upper part is 

more apparent in Fig. 2(b). Although not shown here, the
vertical component of E is much smaller that the 
horizontal component, just after the junction region of the
channel. Then, the Coulombic force generates counter-
clockwise vortices at the mixing layer with subsequent
development of the wavy interface pattern.

The later stage of growth originates from nonlinear
deformation of the interface. Once the mixing layer forms a 
hump (which is convex upward), ~ c c

/

at the 

back of the hump while ~e E at the fore of the

hump. As a result negative and positive charges are induced
periodically at the back and fore of each hump in Fig. 2(b).
The flow is either decelerated or accelerated depending on 
the sign and magnitude of induced charges due to the
Coulombic force. Downstream flow velocity is decreased at
the back of each hump (P1 to P4), while increased at the

fore region (P5 to P8) in Figure 2(c). Decreasing flow
velocity (due to the dragging effect of the Coulombic force)
at P1 to P4 primarily contributes to formation of the
unstable interface pattern. The spike pattern grows
downstream, since the induced charge increases with 
deformation of the interface. The growth is limited by the
stabilizing effect of molecular diffusion and the bounding 
effect of the channel wall.

Note that the electrokinetically generated vorticity is 
always in the counterclockwise direction. Consequently, the 
growing spikes form always in the backward direction,
which is consistent for all experimental observations.

3.2 Mixing enhancement in high electric field

Diffusion is the only effective mixing mechanism for 
low Reynolds number laminar flow in a microchannel.
There have been many trials to enhance mixing by
complicated flow patterns of conventional passive mixers
or external forces of active mixers. For instance, Hau et al.
[6] showed that surface charges under steady electric field 
can drive unstable vortical motion enhancing mixing in
electroosmotic flow. Here we consider similar, but much
stronger and controllable vortical motion due to
concentration gradients in applied electric field.

Figure 3(a) shows visualization in experiment at an
applied electric field of 1.47  105 V/m. As the interface
between two different concentration fluids is retreated to
the direction of the lower entrance it seems that the stream
of the higher concentration is choked at the lower corner of
the junction. The concentration image reveals fast mixing
of the two streams within a short distance. Figure 3(b)
shows the calculated concentration profiles with
instantaneous velocity vectors. It is clear that a strong
counterclockwise vortex is located at the center of the T-
junction, where the flow from the upper inlet meets that
from the lower inlet. To satisfy the continuity relationship, 
a velocity vector around the vortex should have a
considerable y-component yielding strong convective
diffusion. The downstream concentration profile confirms
fast and effective mixing, although weak molecular
diffusion follows further downstream. To augment mixing,
this instability mechanism may be combined with pressure-
driven flow or the conductivity may be controlled by
adding some salt to one of the fluids. This type of mixing
mechanism can be beneficial in many practical application, 
since it does not involve any complex physical structures. 

CONCLUDING REMARK 
The detailed mechanism of electrokinetic instability for 

two miscible fluids of different concentrations is clarified 
from the calculation results of flow velocity, electric field 
and concentration distributions. It is suggested as an
effective strategy for micro mixers to utilize the unstable
vortex motion to enhance mixing of heterogeneous fluids
with considerable concentration differences. Relevant
experimental work is under progress.
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FIG. 2 Numerical results at an instant for 130 . (a) Concentration distribution. (b) Charge density with concentration
distribution. (c) Total velocity (darkness level is proportional to velocity magnitude) and iso-concentration lines (line).

FIG. 3 Concentration profiles in case of high electro static field, (a) experimental result in case of 2.5 kV applied voltage;
photo courtesy of S. M. Shin, (b) numerical result with instantaneous velocity vectors in case of =200.
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