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ABSTRACT 

Maxwell Stress Tensor (MST) method is investigated 
in this study to quantify the degree of approximation made 
with the point–dipole method in respect to dielectrophoresis 
(DEP) in micro–devices. Latex particles and biological 
cells immersed in aqueous buffers of various conductivities 
are considered. The two methods (point–dipole and MST 
full approaches) are compared using analytical dipolar 
solutions and numerical ones obtained from the Finite 
Element (FEM) and the Boundary Element (BEM) 
methods. Particular emphasis is made on the insufficiency 
of the point–dipole method in micro–scale issues especially 
when particles are located near to planar electrode. 

Keywords: Boundary Element Method, Finite Element 
Method, Maxwell stress tensor, point–dipole approach, 
Micro–devices 

1 INTRODUCTION 

When studying DEP, two fundamentally different 
methods are typically used to determine the resulting DEP 
forces applied upon particles. The point–dipole approach, 
which is by far the most used method in literature [1], 
assumes the particle as a point–dipole. Particle is assumed 
here not to disturb the electric field at its vicinity and its 
presence is neglected for computation. For biological cell 
DEP micro–systems, where particles size is of the same 
order than electrodes gap, those assumptions become to 
fail. The second method, the MST full method, makes no 
approximation at this level and the particle presence is 
considered for the electric field computation. The Maxwell 
Stress Tensor (MST) method is used to determine, in this 
case, the DEP force [2]. 

Point–dipole approximation has been used to model 
the electric polarization of materials for more than two 
centuries. Particles forming the matter can be identified as 
point–dipoles when macro–scales are involved. So 
neglecting the particle presence allows calculating the 
electric field with the Laplace equation. The DEP force is 
then obtained from the Clausius–Mossotti expression that 
assumes the particle shape to be spherical. As far as 
biological micro–devices are concerned, none of these 

conditions is satisfied. However, a great deal of works done 
so far and connected to micro–DEP (where electrode–to–
electrode distances are comparable to treated particles 
dimensions) do consider the point–dipole approximation as 
an established fact, perhaps for its easiness and 
straightforwardness, and hence make not enough critical of 
the obtained results [3]. 

This work is a tentative to quantifying the suitability 
of the point–dipole approximation to estimate the DEP 
forces for micro–scale devices. The dipolar, but also 
multipolar forces acting upon biological cells (or latex 
particles), deduced from the undisturbed electric field, are 
compared with a FEM/BEM MST force calculated by a 
former evaluation of the disturbed electric field. BEM 
technique is introduced here to make its validation in order 
to be able to simulate particle deformation afterwards not 
included in this paper. 

The DEP micro–device considered in this work 
consists of a planar electrode near a hyperboloidal 
revolution electrode. The axisymmetry hence got allows 
studying only half of a meridian plan. The electrode gap 
distance equals 100 m. Latex particles experimented are of 
20 m diameter, and Chinese Hamster Ovocytes (CHO) are 
of 30 m diameter. Both latex particles and CHO cells are 
immersed in Mannitol and in a very conductive 
physiological solution. The different electric properties are 
summarized in table 1. 

Table 1: Different electric parameters. The equivalent 
cellular complex permittivity formula used to compute 

CHO DEP is given by [4], Appendix C 

Material 
Relative electric 
permittivity, r

Electric conductivity,
S/m

Latex 2.55 32.379 10
CHO, 

membrane 4 710

CHO, 
cytoplasm 60 0.5 

Mannitol 77.8 41.4 10

Physiologi-
cal solution 78.5 2.5 
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2 THE POINT–DIPOLE APPROACH 

This one is solely based on the electric behavior of a 
static configuration. Because of the skin thickness of the 
buffer (which is greater than the actual device size for the 
whole relevant frequency range), the electric field, E , is 
supposed to be curl–free, i.e., admits a scalar potential, ,

from which it derives. That quasi–static hypothesis writes 
down as 

E  (1) 

When no free space charge density is present, the first 
Maxwell law gives  

. 0E  (2) 

Which leads then to 

02 (3)

Taking into account the geometry of Figure 1, with no 
particle (1) for now, one can see that the problem is 
uniquely determined when considering the conditions, [5], 
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For FEM simulation, the problem is solved using the 
FEMLAB package (version 2.3a). Once this done, the 
electric field and its derivatives are obtained in a 
straightforward manner. Then, as particles are supposed to 
be spherical, the DEP force is computed using the formula, 
[1][4], 

,4 Re
2
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2 3

q k k q1 2
F R E E (5) 

Where R  is the particle radius and k , 1, 2k , the 

complex permittivity of the kth medium defined by 

k
k k

i
(6) 

i is the square root of –1,  the applied external field 

excitation pulsation. k  and k  are the permittivity and the 
conductivity of the kth medium, respectively. The 
expression between brackets in formula (5) is called the 
Clausius-Mossotti factor. This factor, which is based only 
upon different electric properties and frequency, 

determines, separately from the electric field, the DEP 
regime as attracting to stronger electric field regions 
(positive DEP) or repelling from them (negative DEP). 
 For BEM simulation, equations are presented in 
section 3.2. 

3 THE MST FULL APPROACH 

An identical configuration as described in section 1 is 
involved by taking, however, the presence of the particle 

( 1 ) into account. That is by considering figure 1. 

Figure 1: The configuration taken to evaluate the DEP 
forces by point–dipole approximation when particle is 
ignored, and by the full approach when the particle is 

considered. 

Let us consider only a harmonic excitation, i.e.,

1 1

2 2
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i t
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(7)

Hence, all variables will be supposed to be a i te  time 

dependent, which means that , i tX t X ex x for all 

variable X. Therefore, the local electric Gauss theorem and 
the conservativeness of the electric current density, give 

1
. 0k k

i
(8)

3.1 FEM modeling 

FEM results are obtained by solving equations (8) 
with FEMLAB package, which implicitly insures the 
continuity of the complex electric displacement vector, i.e.

. 01 1 2 2

S

E E n (9)

through the interface S, in an intuitive direct manner. The 
other boundary conditions used are formally identical to 
equations (4)
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3.2 BEM modeling 

The following description concerns the BEM 
formulation. Into each medium k the complex electric 
potential  will satisfy, according to (8) 

2 0k  (10) 

By applying the Green second identity to the later 
equation, the associated integral equation will be obtained, 
for 1, 2k , as described by [6], 

k

k
k k k

k k

G
G dSx x x

n n
 (11) 

x  and x  are the position vectors of the observation point 
and the current integration one, respectively and G  is the 

Laplace fundamental solution. 1, if ,k kx x

1
2 , ifk kx x  and 0, ifk kx x .

Let us define 

. 1 2

S

n E E  (12) 

. 2n E  (13) 

If we take the derivative of equation (11) according to 
the observation point, x , combine it to equation (9), we will 
obtain, after manipulation, for x  ( 1 2 3 ), 

the main integral equation to be solved 

1
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This equation is solved using the CANARD BEM 
based programming kernel developed at IRISA, INRIA of 
Rennes, France, and written in FORTRAN90. 

3.3 Evaluation of the DEP force by the MST 

The computation of the applied DEP force upon the 
particle is led by using the MST method. The Maxwell 
tensor, for each medium k, writes as

1
2

k k k k k k

qj q j qj l lT E E E E  (15) 

(The sum for repeated indices is made). 

The total force applied upon the 1  domain writes then 
down as [2] 

1 2 1
q qj j

S

F T n dS  (16) 

4 RESULTS 

For the point–dipole approach, BEM and FEM 
adequacy of the numerical obtained results is demonstrated 
through an analytical comparison not included in this paper. 
The electric potential map calculated by both methods in 
undisturbed configuration is shown in figure 2. 

Figure 2: BEM, at left, and FEM, at right, electric potential 
computation mapping with no disturbing particle. 

Figure 3: FEM/BEM MST force of a latex particle 
immersed in Mannitol at 10 Hz (radius equals 20 m). 
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For the full approach, the computation is led, to 
evaluate the electric force applied upon latex spheres, by 
the MST with both BEM and FEM techniques, whilst the 
DEP force, deduced from the point–dipole approach, is 
evaluated only with FEM technique. Another computation 
is made on Chinese Hamster Ovary (CHO) cells with FEM 
technique by considering a double–layered particle model 
that matches up the shell like lipidic membrane surrounding 
the cytoplasm. Whereas BEM technique uses an equivalent 
homogeneous spheres model, as made by [4]. The main 
simulation results are shown here below. 

Figure 4: FEM/BEM MST and point–dipole forces at the 
gap center (z = 50 m) for latex particle in Mannitol. 

Figure 5: Multipolar forces sum (up to the fifth order), 
versus point–dipole force. 

Latex particles and CHO cells do not perform significantly 
different patterns; hence for convenience only latex particle 
results are shown in this paper. As can be noticed by figure 

3, MST FEM and BEM DEP forces exhibit satisfactory 
agreement. Point–dipole model shows, however, a quite 
different response for all frequencies and different 
combinatory particle–buffer experimented. The only 
exception (figures 3a and 4) to be mentioned is the 
innermost zone ( 40 60 µmz ) where point–dipole 

approach goes with MST one. Discrepancy of the right 
regime (positive or negative DEP) is also noticeable near 
the planar electrode (figure 3b), where positive DEP should 
occur according to point–dipole approach. This 
inconsistency continues to happen even for much smaller 
particles, provided that they are close enough, comparing to 
their radius, to the planar electrode. Point–dipole DEP 
model mismatch could partially be explained by the 
multipolar effect neglected near the sharp electrode, which 
has tendency to increase the DEP force as can be seen in 
figure 5. However, this is no more sufficient near the planar 
electrode. 

5 CONCLUSION 

A survey for micro–devices regarding DEP on 
biological cells and latex particles was made. The 
comparison between DEP forces estimated by both 
Boundary Element/Finite Element–Maxwell Stress Tensor 
method and by Finite Element–point–dipole approximation 
showed a fundamental statement. When particle–to–
electrode distance is comparable to its radius, which is the 
most alike situation to happen as micro–scales are 
concerned, the point–dipole and even multipole approaches 
applied to micro–devices involving biological cells, as well 
as synthetic particles of similar size, are not always valid. 
They do not only fail to estimate the DEP force magnitude 
order but its regime as well (as positive or negative DEP). 
In such a configuration, the expensive, but unavoidable, 
method to properly describe the DEP is to consider the 
immersed cells (or particles) as part of the whole micro–
device.
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