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ABSTRACT

The self-assembly of membrane proteins from solu-
tion into two-dimensional crystals is studied numerically
using a continuum model proposed by Talanquer and
Oxtoby (J. Chem. Phys. 109, 223 (1998)). Although
the mean field theory presented here is only qualitatively
accurate in two dimensions, we obtain the main features
of the crystal nucleation process, such as the nucleation
free energy barrier and the number of particles and crys-
talline particles, respectively, in the critical nucleating
droplet. Particular emphasis is given to the region near
the metastable fluid-fluid coexistence curve, where the
free energy barrier is small. The free energy barrier that
separates a protein rich metastable fluid phase from its
stable crystalline phase is studied for a variety of nu-
cleation pathways in the metastable region. As in the
three dimensional case of globular proteins, the nucle-
ation barrier is smallest in the vicinity of the fluid-fluid
critical point.
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1 INTRODUCTION

Membrane proteins are an important component of
the cell. These proteins are associated with the cell
membrane and serve a variety of important functions.
They help in the transport of ions across the cell mem-
brane, in cell-cell communication and as cell receptors.
In order to determine the function of these membrane
proteins, it is necessary to determine their structure,
which traditionally is done via x-ray crystallography.
This requires the growth of high quality membrane pro-
tein crystals, which is notoriously difficult and which is
very sensitive to the initial conditions of the proteins in
solution. While in the case of globular proteins three di-
mensional crystallization is a common step toward the
determination of the atomic structure, success of grow-
ing three dimensional crystals for membrane proteins is
still infrequent [1]. It is difficult to maintain a crystal
lattice with the sole interactions between the hydrophilic
domains of the proteins. A two dimensional crystalliza-
tion in the presence of lipids, when the membrane pro-
teins reconstruct into lipid membranes to form crystals,

is an entire new way to determine the structure of the
membrane proteins [2] [3].

Recently some attention has been given to under-
standing from a theoretical perspective the conditions
for optimal crystal nucleation from solution, based on
phenomenological microscopic models [8], [9]. In this
work we present a brief summary of a recent, comple-
mentary approach, based on a continuum, density func-
tional approach developed for the study of the crystal-
lization of globular proteins from solution. As in the
case of globular proteins, we focus on the region near
the metastable two phase fluid-fluid coexistence, as this
is presumably the region for optimal crystal nucleation.
The two fluid phases correspond to protein-poor and
protein-rich solutions. A prior simulation study of a
two dimensional modified Lennard-Jones model of mem-
brane proteins found that the lifetime of this two fluid
metastable coexistence state was too short to be studied
[9]. Hence it remains to be seen if this is also the case
for the continuum model presented here.

2 MODEL

In this study we model membrane proteins as two
dimensional nanoparticles, using a density functional
model proposed by Talanquer and Oxtoby [4] for the
study of globular proteins. Their model is in the class
of the phase field models and is based on the well known
van der Waals free energy density of the fluid phase and
a corresponding phenomenological van der Waals like
free energy density of the solid phase. The resulting
free energy density is the minimum of these two free
energy branches. The free energy functional is given by

Q[p,m] = /df[f(p, m) — pp+

K (V) 4+ S K2 (Vm)?] (1)

where f is the Helmholtz free energy density, p is
the chemical potential. The free energy depends on two
order parameters: the (conserved) local density p(r,t)
and a (non-conserved) local structural order parameter
that shows whether the system is in a solid or fluid phase
m(r,t). A critical cluster is a saddle-point of the func-
tional (1); therefore in order to determine its size and
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profile we must solve the Euler-Lagrange equations with
appropriate boundary conditions:
o0 =0 and o0 =0 (2)
op om
Using the saddle-point solutions for p(r) and m(r) we
can obtain such properties of the inhomogeneous sys-
tem as the free energy barrier for nucleation, AQ =
Qfp(r),m(r)} — Q{po, 0}, the surface tension of the nu-
cleating droplet and the number of particles in the crit-
ical cluster.

3 RESULTS AND DISCUSSION

We solve the saddle-point equation (2) numerically
using the shooting method. The boundary conditions
correspond to the metastable disordered fluid state at in-
finity (an infinite distance from the center of the droplet)
and an ordered solid state at the center of the droplet.
We also assume that the system has a polar symmetry.
The solutions to the equations (2) are very sensitive to
the choice of shooting parameters and thus diverge eas-
ily. In order to avoid this divergence we use a shooting
method with a fitting point which we choose to be at
the intersection of the solid and the fluid branches of
the free energy density. This allows us to decrease the
numerical error. The starting point for shooting from
infinity is chosen in agreement with the implementation
of Sear’s approximation [7] in two dimensions. Further
details of this numerical approach are described in [5].

In figure 1 the density and order parameter profiles
are shown for the case of the system close to the critical
point, while in figure 2 the profiles are shown for the
system further from the critical point. As we can see,
the density profile near the critical point has a longer
tail. This shows that the correlation length is larger
as we approach the critical point and diverges at the
critical point. This long tail is in agreement with Sear’s
results [7].

Next, we calculated the free energy barrier at con-
stant supersaturation versus reduced temperature 7'/T..
As in the three dimensional case [4], [6], [5], the free en-
ergy barrier has a minimum in the vicinity of the crit-
ical point. This can be explained in terms of the sec-
ond derivative of the free energy density with respect to
the number density of nanoparticles in the metastable
disordered state f,,. The free energy barrier decreases
as one goes away from the liquidus line and increases
as one approaches the liquidus line. The slope of the
paths with constant supersaturation is proportional to
fop, which vanishes at the critical point. Thus these
paths become horizontal near the critical point [5] and
the system changes its behavior from going away from
the liquidus line to approaching it. Therefore the free
energy barrier has a minimum near the critical point.
Because the mean field theory breaks down near the

Figure 1: Density and order profiles of critical droplet
close to the critical point. Higher profile is the depen-
dence of the density on the distance from the center of
the cluster. Lower profile is the dependence of the order
parameter on the distance from the center of the cluster.
The horizontal line shows the background fluid density.
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Figure 2: Density and order profiles of the critical
droplet further from the critical point. Higher profile
is the dependence of the density on the distance from
the center of the cluster. Lower profile is the dependence
of the order parameter on the distance from the center
of the cluster. The horizontal line shows the background
fluid density.
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critical point, the details of the free energy barrier min-
imum can be explained only qualitatively by these cal-
culations.

We also calculated the dependence of the number of
particles in the critical cluster on the number of crys-
talline particles. One can see that as in the case of globu-
lar proteins, the number of particles in a two-dimensional
critical cluster diverges as we approach the metastable
critical point. This result is a mean field theory re-
sult. However ten Wolde and Frenkel [6] also obtained
a similar liquid-like structure of the critical cluster in
the vicinity of the critical point in their Monte-Carlo
simulations. Further details of our results for the free
energy barrier and the nature of the critical droplet will
be published elsewhere.

4 CONCLUSION

Frenkel and Noro [9] were unable to determine the
the fluid-fluid binodal for a modified Lennard-Jones model
in two dimensions, as the barrier between the fluid-fluid
metastable state and stable crystalline state was very
small. However, they determined the metastable spin-
odal (defined as the locus of points where the barrier to
self-assembly vanishes). There is thus a metastable crit-
ical point in the two-dimensional case. Although the
decay time of the metastable binodal curve might be
too short to be observed, the existence of the metastable
critical point still affects the nucleation barrier and there-
fore the kinetics of self-assembly of the membrane pro-
teins.
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